В чем заключается принцип действия ферментов. Строение и механизм действия ферментов. Роль металлов в стабилизации структуры фермента

Первая ферментативная реакция осахаривания крахмала солодом была исследована отечественным учёным К. Ментен разработали теорию ферментативного катализа. Самнер впервые выделил очищенный препарат фермента уреазы в кристаллическом состоянии. Меррифилду удалось осуществить искусственный синтез фермента РНК-азы.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Реферат

СТРУКТУРА, СВОЙСТВА И МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ

Краткая история ферментологии

Экспериментальное изучение ферментов в 19 веке совпало по времени с изучением процессов дрожжевого брожения, что нашло отражение в терминах «ферменты» и «энзимы». Название ферменты возникло от латинского слова fermentatio – брожение. Термин энзимы произошёл от понятия en zyme - из дрожжей. Вначале этим названиям придавали разный смысл, но в настоящее время они являются синонимами.

Первая ферментативная реакция осахаривания крахмала солодом была исследована отечественным учёным К.С. Кирхгоффом в 1814 году. Впоследствии были предприняты попытки выделения ферментов из дрожжевых клеток (Э. Бюхнер, 1897 год). В начале ХХ века Л. Михаэлис и М. Ментен разработали теорию ферментативного катализа. В 1926 году Д. Самнер впервые выделил очищенный препарат фермента уреазы в кристаллическом состоянии. В 1966 году Б. Меррифилду удалось осуществить искусственный синтез фермента РНК-азы.

Структура ферментов

Ферменты – это высокоспециализированные белки, способные повышать скорость реакции в живых организмах. Ферменты - биологические катализаторы.

Все ферменты являются белками, как правило, глобулярными. Они могут относиться как к простым, так и к сложным белкам. Белковая часть фермента может состоять из одной полипептидной цепи – мономерные белки – ферменты (например, пепсин). Ряд ферментов являются олигомерными белками, включают в свой состав несколько протомеров или субъединиц. Протомеры, объединяясь в олигомерную структуру, соединяются самопроизвольно непрочными нековалентными связями. В процессе объединения (кооперации) происходят структурные изменения отдельных протомеров, в результате чего активность фермента заметно возрастает. Отделение (диссоциация) протомеров и их объединение в олигомерный белок является механизмом регуляции активности ферментов.

Субъединицы (протомеры) в олигомерах могут быть или одинаковыми или отличающимися по первичной - третичной структуре (конформации). В случае соединения различных протомеров в олигомерную структуру фермента возникают множественные формы одного и того же фермента – изоферменты .

Изоферменты катализируют одну и ту же реакцию, но отличаются по набору субъединиц, физико-химическим свойствам, электрофоретической подвижности, по сродству к субстратам, активаторам, ингибиторам. Например, лактатдегидрогеназа (ЛДГ) – фермент, окисляющий молочную кислоту в пировиноградную кислоту, является тетрамером. Он состоит из четырёх протомеров двух типов. Один вид протомеров обозначается Н (выделен из сердечной мышцы), второй протомер обозначается М (выделен из скелетной мускулатуры). Возможно 5 сочетаний этих протомеров в составе ЛДГ: Н 4 , Н 3 М, Н 2 М 2 , Н 1 М 3 , М 4 .

Биологическая роль изоферментов.

  • Изоферменты обеспечивают протекание химических реакций в соответствии с условиями в разных органах. Так, изофермент ЛДГ 1 – обладает высоким сродством к кислороду, поэтому он активен в тканях с высокой скоростью окислительных реакций (эритроциты, миокард). Изофермент ЛДГ 5 активен в присутствии высокой концентрации лактата, наиболее характерен для ткани печени
  • Выраженная органоспецифичность используется для диагностики заболеваний различных органов.
  • Изоферменты изменяют свою активность с возрастом. Так, у плода при недостатке кислорода преобладает ЛДГ 3 , а с увеличением возраста, увеличением поступления кислорода возрастает доля ЛДГ 2 .

Если фермент является сложным белком, то он состоит из белковой и небелковой части. Белковая часть является высокомолекулярной, термолябильной частью фермента и называется апоферментом . Он имеет своеобразную структуру и определяет специфичность ферментов.

Небелковая часть фермента называется кофактором (коферментом ) . Кофактором чаще всего являются ионы металлов, которые могут прочно связываться с апоферментом (например, Zn в ферменте карбоангидразе, С u в ферменте цитохромоксидазе). Коферменты чаще всего являются органическими веществами, менее прочно связанными с апоферментом. Коферментами являются нуклеотиды НАД, ФАД. Кофермент – низкомолекулярная, термостабильная часть фермента. Его роль заключается в том, что он определяет пространственную укладку (конформацию) апофермента, и определяет его активность. Кофакторы могут переносить электроны, функциональные группы, участвовать в образовании дополнительных связей между ферментом и субстратом.

В функциональном отношении в ферменте принято выделять два важных участка в молекуле фермента: активный центр и аллостерический участок

Активный центр – это участок молекулы фермента, который взаимодействует с субстратом и участвует в каталитическом процессе. Активный центр фермента образован радикалами аминокислот, удалённых друг от друга в первичной структуре. Активный центр имеет трёхмерную укладку, чаще всего в его составе выявляются

ОН группы серина

SH – цистеина

NH 2 лизина

- γ -СООН глютаминовой кислоты

В активном центре различают две зоны – зону связывания с субстратом и каталитическую зону.

Зона связывания обычно имеет жёсткую структуру, к которой комплементарно присоединяется субстрат реакции. Например, трипсин расщепляет белки в участках, богатых положительно заряженной аминокислотой лизином, так как в его зоне связывания содержатся остатки отрицательно заряженной аспарагиновой кислоты.

Каталитическая зона - это участок активного центра, непосредственно воздействующий на субстрат и осуществляющий каталитическую функцию. Это зона более подвижна, в ней возможно изменение взаиморасположения функциональных групп.

В ряде ферментов (чаще олигомерных) кроме активного центра присутствует аллостерический участок – участок молекулы фермента, удалённый от активного центра и взаимодействующий не с субстратом, а с дополнительными веществами (регуляторами, эффекторами). В аллостерических ферментах в одной субъединице может находиться активный центр, в другой - аллостерический участок. Аллостерические ферменты изменяют свою активность следующим образом: эффектор (активатор, ингибитор) действует на аллостерическую субъединицу и изменяет её структуру. Затем изменение конформации аллостерической субъединицы по принципу кооперативных изменений опосредованно меняет структуру каталитической субъединицы, что сопровождается изменение активности фермента.

Механизм действия ферментов.

Ферменты обладают рядом общекаталитических свойств:

  • не смещают каталитическое равновесие
  • не расходуются в процессе реакции
  • катализируют только термодинамически реальные реакции. Такими реакциями являются те, в которых исходный энергетический запас молекул больше, чем финальный.

В ходе реакции преодолевается высокий энергетический барьер. Разница между энергией этого порога и исходным энергетическим уровнем - энергия активации.

Скорость ферментативных реакций определяется энергией активации и рядом других факторов.

Константа скорости химической реакции определяется по уравнению:

К = P*Z*e - (Ea / RT )

К - константа скорости реакции

Р – пространственный (стерический) коэффициент

Z – количество взаимодействующих молекул

Е а – энергия активации

R – газовая постоянная

Т – универсальная абсолютная температура

е – основание натуральных логарифмов

В этом уравнении Z , е, R , T – постоянные величины, а Р и Еа - переменные. Причём, между скоростью реакции и стерическим коэффициентом зависимость прямая, а между скоростью и энергией активации – обратная и степенная зависимость (чем ниже Еа, тем выше скорость реакции).

Механизм действия ферментов сводится к увеличению ферментами стерического коэффициента и уменьшению энергии активации.

Снижение ферментами энергии активации.

Например, энергия расщепления Н 2 О 2 без ферментов и катализаторов – 18 000 ккал на моль. Если используется платина и высокая температура, она снижается до 12 000 ккал/моль. При участии фермента каталазы энергия активации составляет лишь 2 000 ккал/моль.

Уменьшение Еа происходит в результате образования промежуточных фермент-субстратных комплексов по схеме: F + S <=> FS -комплекс → F + продукты реакции. Впервые возможность образования фермент- субстратных комплексов была доказана Михаэлисом, Ментеном. Впоследствии многие фермент-субстратные комплексы были выделены. Для объяснения высокой избирательности ферментов при взаимодействии с субстратом предложена теория «ключа и замка» Фишера . Согласно ей, фермент взаимодействует с субстратом только при абсолютном соответствии их друг другу (комплементарность) наподобие ключа и замка. Данная теория объясняла специфичность ферментов, но не раскрывала механизмы их воздействия на субстрат. Позже разработана теория индуцированного соответствия фермента и субстрата - теория Кошланда (теория «резиновой перчатки»). Её суть состоит в следующем: активный центр фермента сформирован и содержит все функциональные группы ещё до взаимодействия с субстратом. Однако эти функциональные группы находятся в неактивном состоянии. В момент присоединения субстрата ониндуцирует изменения положения, структуры радикалов в активном центре фермента. В результате активный центр фермента под действием субстрата переходит в активное состояние и, в свою очередь, начинает воздействовать на субстрат, т.е. происходит взаимодействие активного центра фермента и субстрата. Вследствие этого субстрат переходит в нестабильное, неустойчивое состояние, что ведёт к уменьшению энергии активации.

Взаимодействие фермента и субстрата может заключаться в реакциях нуклеофильного замещения, электрофильного замещения, дегидратации субстрата. Возможно также кратковременное ковалентное взаимодействие функциональных групп фермента с субстратом. В основном происходит геометрическая переориентация функциональных групп активного центра.

Увеличение ферментами стерического коэффициента.

Стерический коэффициент вводится для реакций, в которых участвуют крупные молекулы, имеющие пространственную структуру. Стерический коэффициент показывает долю удачных столкновений активных молекул. Например, он равен 0,4, если 4 из 10 столкновений активных молекул привели к образованию продукта реакции.

Ферменты увеличивают стерический коэффициент, так как они изменяют строение молекулы субстрата в фермент - субстратном комплексе, в результате чего комплементарность фермента и субстрата возрастает. Кроме того, ферменты за счёт своих активных центров упорядочивают расположение молекул субстрата в пространстве (до взаимодействия с ферментом молекулы субстрата располагаются хаотично) и облегчают протекание реакции.

Номенклатура ферментов

Ферменты имеют несколько типов названий.

  1. Тривиальные названия (трипсин, пепсин)
  2. Рабочая номенклатура. В этом названии фермента присутствует окончание – аза, которое прибавляется:
    • к названию субстрата (сахараза, амилаза),
    • к виду связи, на которую действует фермент (пептидаза, гликозидаза),
    • к типу реакции, процесса (синтетаза, гидролаза).

3) У каждого фермента есть классификационное название, в котором отражается тип реакции, вид субстрата и кофермента. Например: ЛДГ – L лактат-НАД + - оксидоредуктаза.

Классификация ферментов.

Классификация ферментов разработана в 1961 году. Согласно классификации каждый фермент расположен в определённом классе, подклассе, подподклассе и имеет порядковый номер. В связи с этим каждый фермент имеет цифровой шифр, в котором первая цифра обозначает класс, вторая – подкласс, третья – подподкласс, четвертая – порядковый номер (ЛДГ: 1,1,1,27). Все ферменты классифицируются на 6 классов.

  1. Оксидоредуктазы
  2. Трансферазы
  3. Гидролазы
  4. Лиазы
  5. Изомеразы
  6. Синтетазы (лигазы)

Оксидоредуктазы .

Ферменты, катализирующие окислительно - востановительные процессы. Общий вид реакции: А ок + В вос = А вост +В ок . Этот класс ферментов включает несколько подклассов:

1. Дегидрогиназы, катализируют реакции путём отщепления водорода от окисляемого вещества. Они могут быть аэробными (переносят водород на кислород) и анаэробными (переносят водород не на кислород, а на какое-то другое вещество).

2. Оксигеназы - ферменты катализирующие окисление путём присоединение кислорода к окисляемому веществу. Если присоединяется один атом кислорода, участвуют монооксигеназы, если два атома кислорода – диоксигеназы.

3. Пероксидазы – ферменты, катализирующие окисление веществ с участием пероксидов.

Трансферазы.

Ферменты, осуществляющие внутримолекулярный и межмолекулярный перенос функциональных групп с одного вещества на другое по схеме: АВ + С = А + ВС. Подклассы трансфераз выделяют в зависимости от вида переносимых групп: аминотрансферазы, метилтрансферазы, сульфотрансферазы, ацилтрансферазы (переносят остатки жирных кислот), фосфотрансферазы (переносят остатки фосфорной кислоты).

Гидролазы.

Ферменты этого класса катализируют разрыв химической связи с присоединением воды по месту разрыва, то есть реакции гидролиза по схеме: АВ + НОН = АН + ВОН. Подклассы гидролаз выделяют в зависимости от вида разрываемых связей: пептидазы расщепляют пептидные связи (пепсин), гликозидазы - гликозидные связи (амилаза), эстеразы – сложноэфирные связи (липаза).

Лиазы .

Лиазы катализируют разрыв химической связи без присоединения воды по месту разрыва. При этом в субстратах образуются двойные связи по схеме: АВ = А + В. Подклассы лиаз зависят от того, между какими атомами разрывается связь и какие вещества образуются. Альдолазы разрывают связь между двумя атомами углерода (например, фруктоза 1,6-ди-фосфатальдолаза «разрезает» фруктозу и две триозы). К лиазам относят ферменты декарбоксилазы (отщепляют углекислый газ), дегидратазы – «вырезают» молекулы воды.

Изомеразы .

Изомеразы катализируют взаимопревращения различных изомеров. Например, фосфогексоизимераза переводит фруктозу в глюкозу. К подклассам изомераз относятся мутазы (фосфоглюкомутаза переводит глюкозо- 1- фосфат в глюкозо-6-фосфат), эпимеразы (например, переводят рибозу в ксилулозу), таутомеразы

Синтетазы (лигазы).

Ферменты этого класса катализируют реакции синтеза новых веществ за счёт энергии АТФ по схеме: А+В+АТФ = АВ. Например, глютаминсинтетаза соединяет глютаминовую кислоту, NH 3 + при участии АТФ с образованием глютамина.

Свойства ферментов.

Ферменты, помимо общих с неорганическими катализаторами, свойств имеют определённые отличия от неорганических катализаторов. К ним относятся:

  • более высокая активность
  • более высокая специфичность
  • более мягкие условия для катализа
  • способность к регуляции активности

Высокая каталитическая активность ферментов .

Ферменты отличаются высокой каталитической активностью. Например, одна молекула карбоангидразы за одну минуту катализирует образование (или расщепление) 36 миллионов молекул угольной кислоты (Н 2 СО 3 ). Высокая активность ферментов объясняется механизмом их действия: они уменьшают энергию активации и увеличивают пространственный (стерический коэффициент). Высокая активность ферментов имеет важное биологическое значение, состоящее в том, что они обеспечивают высокую скорость химических реакций в организме.

Высокая специфичность ферментов .

Все ферменты обладают специфичностью, однако степень специфичности в разных ферментах различна. Выделяют несколько видов специфичности ферментов.

Абсолютная субстратная специфичность, при которой фермент действует только на одно определённое вещество. Например, фермент уреаза расщепляет только мочевину.

Абсолютная групповая специфичность, при которой фермент оказывает один и тот же каталитический эффект на группу соединений, близких по структуре. Например, фермент алкогольдегидрогеназа окисляет не только С 2 Н 5 ОН, но и его гомологи (метиловый, бутиловый и другие спирты).

Относительная групповая специфичность, при которой фермент осуществляет катализ разных классов органических веществ. Например, фермент трипсин проявляет пептидазную и эстеразную активность.

Стереохимическая специфичность (оптическая специфичность), при которой расщепляется только определённая форма изомеров ( D , L формы, α, β, цис - трансизомеры). Например, ЛДГ действует только на L -лактат, L -аминокислотоксидазы действуют на L -изомеры аминокислот.

Высокая специфичность объясняется уникальной для каждого фермента структурой активного центра.

Термолябильность ферментов.

Термолябильность - зависимость активности ферментов от температуры. При повышении температуры от 0 до 40 градусов активность ферментов растёт согласно правилу Вант-Гоффа (при возрастании температуры на 10 градусов скорость реакции увеличивается в 2 – 4 раза). При дальнейшем повышении температуры активность ферментов начинает снижаться, что объясняется тепловой денатурацией белковой молекулы фермента. Графически термозависимость ферментов имеет вид:

Инактивация фермента при 0 градусов обратима, а при высокой температуре инактивация приобретает необратимый характер. Это свойство ферментов определяет максимальную скорость реакции в условиях температуры тела человека. Термолябильность ферментов должна учитываться в практической медицинской деятельности. Например, при проведении ферментативной реакции в пробирке, необходимо создавать оптимальную температуру. Это свойство ферментов может быть применено в криохирургии, когда сложная длительная операция проводится при снижении температуры тела, что замедляет скорость протекающих в организме реакций, снижает потребление кислорода тканями. Хранить ферментативные препараты необходимо при пониженной температуре. Для обезвреживания, обеззараживания микроорганизмов используют высокие температуры (автоклавирование, кипячение инструментария).

Фотолябильность .

Фотолябильность - зависимость активности ферментов от действия ультрафиолетовых лучей. УФЛ вызывают фотоденатурацию белковых молекул и уменьшают активность ферментов. Это свойство ферментов используют в бактерицидном эффекте ультрафиолетовых ламп.

Зависимость активности от рН.

У всех ферментов есть определённый интервал рН, в котором активность фермента максимальна - оптимум рН. Для многих ферментов оптимум около 7. В то же время, для пепсина оптимальная среда 1-2, для щелочной фосфатазы около 9. При отклонении рН от оптимума активность фермента снижается, что видно из графика. Это свойство ферментов объясняется изменением ионизации ионогенных групп в молекулах фермента, что ведёт к изменению ионных связей в молекуле белковой молекулы фермента. Это сопровождается изменением конформации молекулы фермента, а это, в свою очередь, приводит к изменению его активности. В условиях организма рН - зависимость определяет максимальную активность ферментов. Это свойство находит и практическое применение. Ферментативные реакции вне организма проводятся при оптимуме рН. При сниженной кислотности желудочного сока с лечебной целью назначают раствор НС l .

Зависимость скорости ферментативной реакции от концентрации фермента и концентрации субстрата

Зависимость скорости реакции от концентрации фермента и концентрации субстрата (кинетика ферментативных реакций) представлена на графиках.

График 1 график 2

В ферментативной реакции ( F + S 2  1 FS → 3 F + P ) выделяют скорости трёх составляющих этапов:

1- образование фермент-субстратного комплекса FS ,

2- обратный распад фермент – субстратного комплекса,

3 – распад фермент-субстратного комплекса с образованием продуктов реакции. Скорость каждой из этих реакций подчиняется закону действующих масс:

V 1 = К 1 [ F ]* [ S ]

V 2 = K 2 * [ FS ]

V 3 = K 3 *[ FS ]

В момент равновесия скорость реакции образования FS равна сумме скоростей его распада: V 1 = V 2 + V 3 . Из трёх этапов ферментативной реакции наиболее важным и медленным является третий , так как он связан с образованием продуктов реакции. По приведенной выше формуле найти скорость V 3 невозможно, так как фермент- субстратный комплекс очень неустойчив измерение его концентрациизатруднено. В связи с этим, Михаэлис-Ментен ввели К m – константу Михаэлиса и преобразовали уравнение для измерения V 3 в новое уравнение, в котором присутствуют реально измеримые величины:

V 3 = K 3 * [ F 0 ] * [S] / Km + [S] или V 3 =V max * [S] / Km+[S]

[ F 0 ] – исходная концентрация фермента

К m – константа Михаэлиса.

Физический смысл К m : К m = (К 2 +К 3 ) /К 1 . Она показывает соотношение констант скоростей распада фермент-субстратного комплекса и константы скорости его образования.

Уравнение Михаэлиса-Ментен является универсальным. Оно иллюстрирует зависимость скорости реакции от [ F 0 ] от [ S ]

  1. Зависимость скорости реакции от концентрации субстрата. Эта зависимость выявляется при малых концентрациях субстрата [ S ]< Km . В этом случае концентрацией субстрата в уравнении можно пренебречь и уравнение приобретает вид: V 3 = K 3* [ F 0 ] * [ S ] / Km . В данном уравнении K 3 , F 0 ], Km – константы и могут быть заменены новой константой К*. Таким образом, при малой концентрации субстрата скорость реакции прямо пропорциональна этой концентрации V 3 = K * * [ S ]. Эта зависимость соответствует первому участку графика 2.
  2. Зависимость скорости от концентрации фермента проявляется при высокой концентрации субстрата. S ≥ Km . В этом случае можно пренебречь Km и уравнение преобразуется в следующее: V 3 = K 3* (([ F 0 ] * [ S ]) /[ S ]) = K 3* [ F 0 ] = V max . Таким образом, при высокой концентрации субстрата скорость реакции определяется концентрацией фермента и достигает максимального значения V 3 = K 3 [ F 0 ]= V max . (третий участок графика 2).
  3. Позволяет определить численное значение Km при условии V 3 = V max /2. В этом случае уравнение приобретает вид:

V max /2 = ((V max *[ S ])/ Km +[ S ]), откуда следует, что Km =[ S ]

Таким образом, К m численно равна концентрации субстрата при скорости реакции, равной половине максимальной. К m является очень важной характеристикой фермента, она измеряется в молях (10 -2 – 10 -6 моль) и характеризуют специфичность фермента: чем ниже Km , тем выше специфичность фермента.

Графическое определение константы Михаэлиса.

Удобнее использовать график, представляющий прямую линию. Такой график предложен Лайнуивером – Берком (график двойных обратных величин), который соответствует обратному уравнению Михаэлиса - Ментен

Зависимость скорости ферментативных реакций от присутствия активаторов и ингибиторов.

Активаторы – вещества, повышающие скорость ферментативных реакций. Различают специфические активаторы, повышающие активность одного фермента (НС l - активатор пепсиногена) и неспецифические активаторы, увеличивающие активность целого ряда ферментов (ионы Mg – активаторы гексокиназы, К, Na –АТФ-азы и других ферментов). В качестве активаторов могут служить ионы металлов, метаболиты, нуклеотиды.

Механизм действия активаторов .

  1. Достраивание активного центра фермента, в результате чего облегчается взаимодействие фермента с субстратом. Таким механизмом обладают в основном ионы металлов.
  2. Аллостерический активатор взаимодействует с аллостерическим участком (субъединицей) фермента, через его изменения опосредованно изменяет структуру активного центра и увеличивает активность фермента. Аллостерическим эффектом обладают метаболиты ферментативных реакций, АТФ.
  3. Аллостерический механизм может сочетаться с изменением олигомерности фермента. Под действием активатора происходит объединение нескольких субъединиц в олигомерную форму, что резко увеличивает активность фермента. Например, изоцитрат является активатором фермента ацетил-КоА карбоксилазы.
  4. Фосфолирирование - дефосфолирирование ферментов относится к обратимой модификации ферментов. Присоединение Н 3 РО 4 чаще всего резко увеличивает активность фермента. Например, два неактивных димера фермента фосфорилазы соединяются с четырьмя молекулами АТФ и образуют активную тетрамерную фосфорилированную форму фермента. Фосфолирирование ферментов может сочетаться с изменением их олигомерности. В некоторых случаях фосфорилирование фермента, наоборот, снижает его активность (например, фосфорилирование фермента гликогенсинтетазы)
  5. Частичный протеолиз (необратимая модификация). При этом механизме от неактивной формы фермента (профермента) отщепляется фрагмент молекулы, блокирующий активный центр фермента. Например, неактивный пепсиноген под действием HCL переходит в активный пепсин.

Ингибиторы – вещества, понижающие активность фермента.

По специфичности выделяют специфичные и неспецифичные ингибиторы

По обратимости эффекта различают обратимые и необратимые ингибиторы.

По месту действия встречаются ингибиторы, действующие на активный центр и вне активного центра.

По механизму действия различают на конкурентные и неконкурентные ингибиторы.

Конкурентное ингибирование .

Ингибиторы этого типа имеют структуру, близкую к структуре субстрата. В силу этого ингибиторы и субстрат конкурируют за связывание активного центра фермента. Конкурентное ингибирование - это обратимое ингибирование Эффект конкурентного ингибитора может быть уменьшен путём повышения концентрации субстрата реакции

Примером конкурентного ингибирования может служить угнетение активности сукцинатдегидрогеназы, катализирующей окисление дикарбоновой янтарной кислоты, дикарбоновой малоновой кислотой, сходной по структуре с янтарной кислотой.

Принцип конкурентного ингибирования широко используется при создании лекарственных средств. Например, сульфаниламидные препараты имеют структуру, близкую к структуре парааминобензойной кислоты, необходимой для роста микроорганизмов. Сульфаниламиды блокируют ферменты микроорганизмов, необходимые для усвоения парааминобензойной кислоты. Некоторые противоопухолевые препараты являются аналогами азотистых оснований и, тем самым, ингибируют синтез нуклеиновых кислот (фторурацил).

Графически конкурентное ингибирование имеет вид:

Неконкурентное ингибирование .

Неконкурентные ингибиторы структурно не имеют схожести с субстратами реакций и поэтому не могут вытесняться при высокой концентрации субстрата. Существует несколько вариантов действия неконкурентных ингибиторов:

  1. Блокирование функциональной группы активного центра фермента и, вследствие этого, уменьшение активности. Например, активность S Н - групп могут связывать тиоловые яды обратимо (соли металлов, ртути, свинца) и необратимо (монойодацетат). Эффект ингибирования тиоловых ингибиторов может быть уменьшен введением добавочных веществ, богатых SH группами (например, унитиол). Встречаются и используются сериновые ингибиторы, блокирующие ОН - группы активного центра ферментов. Таким эффектом обладают органические фосфофторсодержащие вещества. Эти вещества могут, в частности, ингибировать ОН - группы в ферменте ацетилхолинэстеразе, разрушающей нейромедиатор ацетилхолин.
  2. Блокирование ионов металлов, входящих в состав активного центра ферментов. Например, цианиды блокируют атомы железа, ЭДТА (этилендиаминтетраацетат) блокирует ионы Са, Mg .
  3. Аллостерический ингибитор взаимодействует с аллостерическим участком, опосредованно через него по принципу кооперативности, меняя структуру и активность каталитического участка. Графически неконкурентное ингибирование имеет вид:

Максимальная скорость реакции при неконкурентном ингибировании не может быть достигнута путём повышения концентрации субстрата.

Регуляция активности ферментов в процессе метаболизма.

Адаптация организма к меняющимся условиям (режим питания, экологические воздействия и пр.) возможна благодаря изменению активности ферментов. Существует несколько возможностей регуляции скорости ферментных реакций в организме:

  1. Изменение скорости синтеза ферментов (этот механизм требует длительного отрезка времени).
  2. Увеличение доступности субстрата и фермент путём изменения проницаемости клеточных мембран.
  3. Изменение активности ферментов, уже имеющихся в клетках и тканях. Этот механизм осуществляется с большой скоростью и носит обратимый характер.

В многоступенчатых ферментативных процессах выделяют регуляторные, ключевые ферменты, которые ограничивают суммарную скорость процесса. Чаще всего это ферменты начальной и конечной стадий процесса. Изменение активности ключевых ферментов происходит по различным механизмам.

  1. Аллостерический механизм:
  1. Изменение олигомерности фермента:

Мономеры не активные ↔ олигомеры активные

  1. Фосфолирирование - дефосфорилирование:

Фермент (неактивный) + Н 3 РО 4 ↔ фосфорилированный активный фермент.

В клетках широко распространён авторегуляторный механизм. Авторегуляторным механизмом является, в частности, ретроингибирование, при котором продукты ферментативного процесса угнетают ферменты начальных стадий. Например, высокие концентрации пуриновых и пиримидиновых нуклеотидов угнетают начальные в стадии их синтеза.

Иногда исходные субстраты активируют конечные ферменты, на схеме: субстрат А активирует F 3 . Например, активная форма глюкозы (глюкозо-6-фосфат) активирует конечный фермент синтеза гликогена из глюкозы (гликогенсинтетазу).

Структурная организация ферментов в клетке

Слаженность обменных процессов в организме возможна благодаря структурной разобщенности ферментов в клетках. Отдельные ферменты располагаются в тех или иных внутриклеточных структурах – компартментализация. Например, в плазматической мембране активен фермент калий - натриевая АТФ-аза. В митохондриях активны ферменты окислительных реакций (сукцинатдегидрогеназа, цитохромоксидаза). В ядре активны ферменты синтеза нуклеиновых кислот (ДНК-полимераза). В лизосомах активны ферменты расщепления различных веществ (РНК - аза, фосфатаза и другие).

Ферменты, наиболее активные в данной клеточной структуре, называются индикаторными или маркерными ферментами. Их определение в клинической практике отражает глубину структурных повреждений ткани. Некоторые ферменты объединяются в полиферментные комплексы, например, пируватдегидрогеназный комплекс (ПДК), осуществляющий окисление пировиноградной кислоты.

Принципы обнаружения и количественного определения ферментов:

Обнаружение ферментов основано на их высокой специфичности. Ферменты обнаруживают по производимому ими действию, т.е. по факту протекания той реакции, которую катализирует данный фермент. Например, амилазу обнаруживают по реакции расщепления крахмала до глюкозы.

Критериями протекания ферментативной реакции могут быть:

  • исчезновение субстрата реакции
  • появление продуктов реакции
  • изменение оптических свойств кофермента.

Количественное определение ферментов

Так как концентрация ферментов в клетках очень низка, то определяют не их истинную концентрацию, а о количестве фермента судят косвенно, по активности фермента.

Активность ферментов оценивают по скорости ферментативной реакции, протекающей в оптимальных условиях (оптимум температуры, РН, избыточно высокая концентрация субстрата). В этих условиях скорость реакции прямо пропорциональна концентрации фермента ( V = K 3 [ F 0 ]).

Единицы активности (количества) фермента

В клинической практике используют несколько единиц активности фермента.

  1. Международная единица – то количество фермента, которое катализирует превращение 1 микромоля субстрата за минуту при температуре 25 0 С.
    1. Катал (в системе СИ) – то количество фермента, которое катализирует превращение 1 моля субстрата за секунду.
    2. Удельная активность – отношение активности фермента к массе белка фермента.
    3. Молекулярная активность фермента показывает, сколько молекул субстрата превращается под действием 1 молекулы фермента.

Клиническая ферментология

Применение сведений о ферментах в медицинской практике составляет раздел медицинской энзимологии. Она включает 3 раздела:

  1. Энзимодиагностика
    1. Энзимопотология
      1. Энзимотерапия

Энзимодиагностика – раздел, изучающий возможности исследования активности ферментов для диагностики заболеваний. Для оценки повреждения отдельных тканей используют органоспецифические ферменты, изоферменты.

В педиатрической практике при проведении ферментодиагностики необходимо учитывать детские особенности. У детей активность некоторых ферментов выше, чем у взрослых, Например, высокая активность ЛДГ отражает преобладание анаэробных процессов в раннем постнатальном периоде. Содержание трансаминаз в плазме крови детей повышено в результате увеличенной сосудисто-тканевой проницаемости. Активность глюкоза-6-фосфатдегидрогеназы увеличена в результате усиленного распада эритроцитов. Активность других ферментов, наоборот, ниже, чем у взрослых. Например, активность пепсина, ферментов поджелудочной железы (липазы, амилазы) снижена в силу незрелости секреторных клеток.

С возрастом возможно перераспределение отдельных изоферментов. Так, у детей преобладает ЛДГ 3 (более анаэробная форма), а у взрослых ЛДГ 2 (более аэробная форма).

Энзимопатология – раздел ферментологии, изучающий заболевания, ведущим механизмом развития которых является нарушение активности ферментов. К ним относятся нарушения обмена углеводов (галактоземия, гликогенозы, мукополисахаридозы), аминокислот (фенилкетонурия, цистинурия), нуклеотидов (оротатацидурия), порфиринов (порфирии).

Энзимотерапия – раздел ферментологии, изучающий применение ферментов, коферментов, активаторов, ингибиторов с лечебными целями. Ферменты могут применяться с заместительной целью (пепсин, ферменты поджелудочной железы), с литической целью для удаления некротических масс, тромбов, для разжижения вязких экссудатов.

Литература

1. Авдеева, Л.В. Биохимия: Учебник / Л.В. Авдеева, Т.Л. Алейникова, Л.Е. Андрианова; Под ред. Е.С. Северин. - М.: ГЭОТАР-МЕД, 2013. - 768 c.

2. Ауэрман, Т.Л. Основы биохимии: Учебное пособие / Т.Л. Ауэрман, Т.Г. Генералова, Г.М. Суслянок. - М.: НИЦ ИНФРА-М, 2013. - 400 c.

3. Базарнова, Ю.Г. Биохимические основы переработки и хранения сырья животного происхождения: Учебное пособие / Ю.Г. Базарнова, Т.Е. Бурова, В.И. Марченко. - СПб.: Просп. Науки, 2011. - 192 c.

4. Баишев, И.М. Биохимия. Тестовые вопросы: Учебное пособие / Д.М. Зубаиров, И.М. Баишев, Р.Ф. Байкеев; Под ред. Д.М. Зубаиров. - М.: ГЭОТАР-Медиа, 2008. - 960 c.

5. Бокуть, С.Б. Биохимия филогенеза и онтогенеза: Учебное пособие / А.А. Чиркин, Е.О. Данченко, С.Б. Бокуть; Под общ. ред. А.А. Чиркин. - М.: НИЦ ИНФРА-М, Нов. знание, 2012. - 288 c.

6. Гидранович, В.И. Биохимия: Учебное пособие / В.И. Гидранович, А.В. Гидранович. - Мн.: ТетраСистемс, 2012. - 528 c.

7. Голощапов, А.П. Генетико-биохимические аспекты адаптации человека к условиям города с развитой химической промышленностью / А.П. Голощапов. - М.: КМК, 2012. - 103 c.

8. Гунькова, П.И. Биохимия молока и молочных продуктов / К.К. Горбатова, П.И. Гунькова; Под общ. ред. К.К. Горбатова. - СПб.: ГИОРД, 2010. - 336 c.

9. Димитриев, А.Д. Биохимия: Учебное пособие / А.Д. Димитриев, Е.Д. Амбросьева. - М.: Дашков и К, 2013. - 168 c.

10. Ершов, Ю.А. Общая биохимия и спорт: Учебное пособие / Ю.А. Ершов. - М.: МГУ, 2010. - 368 c.

11. Ершов, Ю.А. Основы биохимии для инженеров: Учебное пособие / Ю.А. Ершов, Н.И. Зайцева; Под ред. С.И. Щукин. - М.: МГТУ им. Баумана, 2010. - 359 c.

12. Камышников, В.С. Справочник по клинико-биохимической лабораторной диагностике: В 2 томах. В 2-х т.Справочник по клинико-биохимической лабораторной диагностике: В 2 томах / В.С. Камышников. - Мн.: Беларусь, 2012. - 958 c.

13. Клопов, М.И. Биологически активные вещества в физиологических и биохимических процессах в организме животного: Учебное пособие / М.И. Клопов, В.И. Максимов. - СПб.: Лань, 2012. - 448 c.

14. Михайлов, С.С. Спортивная биохимия: Учебник для вузов и колледжей физической культуры / С.С. Михайлов. - М.: Сов. спорт, 2012. - 348 c.

15. Репников, Б.Т. Товароведение и биохимия рыбных товаров: Учебное пособие / Б.Т. Репников. - М.: Дашков и К, 2013. - 220 c.

16. Рогожин, В.В. Биохимия молока и мяса: Учебник / В.В. Рогожин. - СПб.: ГИОРД, 2012. - 456 c.

17. Рогожин, В.В. Биохимия растений: Учебник / В.В. Рогожин. - СПб.: ГИОРД, 2012. - 432 c.

18. Рогожин, В.В. Практикум по физиологии и биохимии растений: Учебное пособие / В.В. Рогожин, Т.В. Рогожина. - СПб.: ГИОРД, 2013. - 352 c.

19. Таганович, А.Д. Патологическая биохимия: Монография / А.Д. Таганович. - М.: БИНОМ, 2013. - 448 c.

20. Филиппович, Ю.Б. Биохимические основы жизнедеятельности человека: Учебное пособие для студентов вузов / Ю.Б. Филиппович, А.С. Коничев, Г.А. Севастьянова, Н.М. Кутузова. - М.: ВЛАДОС, 2005. - 407 c.

21. Щербаков, В.Г. Биохимия и товароведение масличного сырья / В.Г. Щербаков, В.Г. Лобанов. - М.: КолосС, 2012. - 392 c.

Другие похожие работы, которые могут вас заинтересовать.вшм>

3791. Рыночный механизм: сущность, структура, функции 86.49 KB
Рыночный механизм - это механизм взаимодействия продавцов и покупателей по поводу установления цен, объемов производства, его структуры и качества продукции, это механизм распределения ресурсов и доходов на основе объективных экономических законов рынка.
5233. Сегнетоэлектрики – структура свойства и применение 2.33 MB
Сегнетоэлектрики – диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в отсутствие внешнего электрического поля. Свое название сегнетоэлектрики получили от названия минерала
7848. Семейство ретровирусов. ВИЧ, его свойства, антигенная структура. Эпидемиология и патогенез ВИЧ-инфекции, методы диагностики. Проблемы лечения и специфической профилактики ВИЧ-инфекции 16.75 KB
ВИЧ его свойства антигенная структура. Эпидемиология и патогенез ВИЧинфекции методы диагностики. Проблемы лечения и специфической профилактики ВИЧинфекции Специальность – Лечебное дело Подготовила преподаватель – Коледа В. Минск Актуализация темы: ВИЧинфекция инфекционный процесс в организме человека вызываемый вирусом иммунодефицита человека ВИЧ характеризующийся медленным течением поражением иммунной и нервной систем последующим развитием на этом фоне оппортунистических инфекций...
3755. Действия над числами 16.02 KB
При сложении двоичных чисел в каждом разряде в соответствии с таблицей двоичного сложения производится сложение двух цифр слагаемых или двух этих цифр и 1, если имеется перенос из соседнего младшего разряда
10885. Следственные действия 41.97 KB
В других случаях когда акцент делался на познавательный аспект следственными именовались лишь те действия которые служили способами исследования обстоятельств дела и установления истины. По поручению следователя представляемому в установленном в уголовнопроцессуальном законе порядке отдельные следственные действия по делу находящемуся в его производстве могут производить органы дознания или другие следователи. Как правило следственные действия производятся по инициативе следователя или лица производящего дознание.
5406. Психологическая характеристика группового действия 16.13 KB
ассматриваемые нами явления можно разделить на три основные группы: характеристики группы как субъекта действия, основанные на самосознании группы, характеристики морально-психологических отношений в процессе группового действия
533. Сочетание действия вредных факторов 4.94 KB
Установлено что токсичность ядов может усиливаться как при повышении так и при понижении температуры воздуха. Расширение сосудов кожи и слизистых повышает скорость всасывания токсических веществ через кожу и дыхательные пути Усиление токсического действия при повышенных температурах воздуха отмечено в отношении многих летучих ядов паров бензина и ртути оксидов азота и других. Причиной этого служит усиление процессов гидролиза повышение задержки ядов на поверхности слизистых оболочек изменение агрегатного состояния ядов. При повышенном...
7422. ИССЛЕДОВАНИЕ ДЕЙСТВИЯ ГЕЛИОГЕОФИЗИЧЕСКИХ ФАКТОРОВ НА БИОСИСТЕМЫ 1.34 MB
В результате выполнения дипломной работы изучена реакция волютиновых гранул на геогелиофизические воздействия. Получены графики, выражающие зависимости типа реакции метахромазии от различных гелиофизических факторов. Наблюдение 3 типа реакции метахромазии зачастую происходит спустя 2-3 суток после максимумов Ар, Кр индексов геомагнитной возмущенности. Получены данные корреляционных зависимостей по Пирсону
3643. Принципы действия угол. закона в пространстве 2.96 KB
Это вопрос опредия территории на которой применяется УЗ. Лицо совершившее ПРе на территории РФ подлежит угол. Граждане РФ и постоянно проживающие в РФ лица без гражданства совершившие ПРе вне пределов РФ подлежат УО по УК если совершенное ими деяние признано ПРем в госве на территории которого оно было совершено и если эти лица не были осуждены в иностранном госве. При осуждении указанных лиц наказе не может превышать верхнего предела санкции предусмотренной законом иностранного госва на территории кго было совершено ПРе.
17448. Исследование овощеочистительной машины периодического действия МОК-250 364.1 KB
Пища является одной из основ в жизни людей как источник энергии для жизнедеятельности организма человек должен питаться от 1 до 5 раз в день. Полноценная пища её рацион содержит все незаменимые элементы пищи это такие элементы которые пища должна включать для того чтобы обеспечить нормальное функционирование организма человека. Раздел Безопасность жизнедеятельности уделяет особое внимание технике безопасности а также всем мерам принимаемым для того чтобы работа на исследуемой машине приносила как можно меньше вреда и опасности...
Биологическая химия Лелевич Владимир Валерьянович

Механизм действия ферментов

Механизм действия ферментов

В любой ферментативной реакции выделяют следующую стадийность:

E + S ? ?E + P

где Е – фермент, S – субстрат, – фермент-субстратный комплекс, Р – продукт.

Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.

Энергетические изменения при химических реакциях

Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружения остаётся постоянной, при этом химическая система стремится к снижению упорядоченности (увеличению энтропии). Для понимания энергетики химической реакции недостаточно знать энергетический баланс входящих и выходящих из реакции веществ. Необходимо учитывать изменения энергии в процессе данной химической реакции и роль ферментов в динамике этого процесса.

Чем больше молекул обладает энергией, превышающей уровень Еа (энергия активации) тем выше скорость химической реакции. Повысить скорость химической реакции можно нагреванием. При этом увеличивается энергия реагирующих молекул. Однако, для живых организмов высокие температуры губительны, поэтому в клетке для ускорения химических реакций используются ферменты. Ферменты обеспечивают высокую скорость реакций при оптимальных условиях, существующих в клетке, путём понижения уровня Еа. Таким образом, ферменты снижают высоту энергетического барьера, в результате чего возрастает количество реакционноспособных молекул, и, следовательно, увеличивается скорость реакции.

Роль активного центра в ферментативном катализе

В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контакт с субстратом вступает лишь небольшая часть молекулы фермента, обычно от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Роль остальных аминокислотных остатков состоит в обеспечении правильной конформации молекулы фермента для оптимального протекания химической реакции.

Активный центр на всех этапах ферментативного катализа нельзя рассматривать как пассивный участок для связывания субстрата. Это комплексная молекулярная «машина», использующая разнообразные химические механизмы, способствующие превращению субстрата в продукт.

В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Это свойство активного центра называют эффектом сближения и ориентации реагентов. Такое упорядоченное расположение субстратов вызывает уменьшение энтропии и, как следствие, снижение энергии активации (Еа), что определяет каталитическую эффективность ферментов.

Активный центр фермента также способствует дестабилизации межатомных связей в молекуле субстрата, что облегчает протекание химической реакции и образование продуктов. Это свойство активного центра называют эффектом деформации субстрата.

Из книги Новая наука о жизни автора Шелдрейк Руперт

2.2. Механизм Современная механистическая теория морфогенеза приписывает главную роль ДНК по следующим четырем причинам. Во-первых, было обнаружено, что многие случаи наследственных различий между животными или растениями данного вида зависят от генов, которые

Из книги Род человеческий автора Барнетт Энтони

Механизм действия нервной системы Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в

Из книги История одной случайности [или Происхождение человека] автора Вишняцкий Леонид Борисович

Из книги Путешествие в страну микробов автора Бетина Владимир

Микробы - продуценты ферментов Мы уже знаем, что ферменты - это биологические катализаторы, то есть вещества, способствующие осуществлению многих химических реакций, которые-происходят в живой клетке и необходимы для получения питательных веществ и построения ее

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Гетерохрония - классический механизм эволюционных изменений Попытки найти механизмы эволюции, связанные своими корнями с онтогенезом, сосредоточены главным образом на гетерохронии - изменениях относительных сроков процессов развития. Геккель подчеркивал зависимость

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

2.2. Общая характеристика пищеварительных ферментов Обращает на себя внимание принципиальное сходство, а иногда и поразительное совпадение ферментных систем, реализующих пищеварение у различных организмов. Поэтому те характеристики, которые будут представлены ниже,

Из книги Тайна Бога и наука о мозге [Нейробиология веры и религиозного опыта] автора Ньюберг Эндрю

2. Аппараты мозга. Механизм восприятия

Из книги Фенетика [Эволюция, популяция, признак] автора Яблоков Алексей Владимирович

Глава I. Механизм эволюции Главная стратегическая задача биологии как научной дисциплины - познание закономерностей развития жизни для управления ими в интересах человека. Еще в 20-х годах Н. И. Вавилов поставил перед учеными проблему перехода к управляемой эволюции -

Из книги Что, если Ламарк прав? Иммуногенетика и эволюция автора Стил Эдвард

Взаимодействие эволюционных сил - механизм эволюции Пусковой механизм эволюции функционирует в результате совместного действия эволюционных факторов в пределах популяции как эволюционной единицы. Всякая популяция у любого вида подвержена тому или иному давлению

Из книги Тайны пола [Мужчина и женщина в зеркале эволюции] автора Бутовская Марина Львовна

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Механизм компенсации дозы У подавляющего большинства млекопитающих (но не у сумчатых) в соматических клетках самок одна из Х-хромосом инактивирована. Подобное выключение является одним из вариантов решения проблемы у видов, для которых один пол представлен двумя

Из книги автора

Глава 3. Ферменты. Механизм действия ферментов Ферментами или энзимами называют специфические белки, входящие в состав всех клеток и тканей живых организмов и выполняющие роль биологических катализаторов.Общие свойства ферментов и неорганических катализаторов:1. Не

Из книги автора

Структура молекулы ферментов По строению ферменты могут быть простыми и сложными белками. Фермент, являющийся сложным белком называют холоферментом. Белковая часть фермента называется апоферментом, небелковая часть – кофактором. Различают два типа кофакторов:1.

Из книги автора

Специфичность действия ферментов Ферменты обладают более высокой специфичностью действия по сравнению с неорганическими катализаторами. Различают специфичность по отношению к типу химической реакции, катализируемой ферментом, и специфичность по отношению к

Из книги автора

Глава 4. Регуляция активности ферментов. Медицинская энзимология Способы регуляции активности ферментов:1. Изменение количества ферментов.2. Изменение каталитической эффективности фермента.3. Изменение условий протекания реакции.Регуляция количества

Из книги автора

Применение ферментов в медицине Ферментные препараты широко используют в медицине. Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств. Кроме того, ферменты используют в качестве

Ферменты. Механизм действия ферментов (биохимия)

Ферментами или энзимами называют специфические белки, входящие в состав всех клеток и тканей живых организмов и выполняющие роль биологических катализаторов.


Общие свойства ферментов и неорганических катализаторов:

1. Не расходуются в процессе реакции.

2. Оказывают свое действие при малых концентрациях.

3. Не оказывают влияния на величину константы равновесия реакции.

4. Их действие подчиняется закону действующих масс.

5. Не ускоряют термодинамически невозможных реакций.


Отличия ферментов от неорганических катализаторов.

1. Термолабильность ферментов.

2. Зависимость активности ферментов от рН среды.

3. Специфичность действия ферментов.

4. Скорость ферментативных реакций подчиняется определенным кинетическим закономерностям.

5. Активность ферментов зависит от действия регуляторов – активаторов и ингибиторов.

6. Ряд ферментов при формировании третичной и четвертичной структуры подвергаются постсинтетической модификации.

7. Размеры молекулы ферментов обычно намного превышают размеры их субстратов.

Структура молекулы ферментов

По строению ферменты могут быть простыми и сложными белками. Фермент, являющийся сложным белком называют холоферментом. Белковая часть фермента называется апоферментом, небелковая часть – кофактором.


Различают два типа кофакторов:

1. Простетическая группа – прочно связана с апоферментом, часто ковалентными связями.

2. Кофермент – небелковая часть, легко отделяемая от апофермента. Часто коферментами служат производные витаминов.


К коферментам относятся следующие соединения:

1. производные витаминов;

2. гемы, входящие в состав цитохромов, каталазы, пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой ферментов;

3. нуклеотиды – доноры и акцепторы остатка фосфорной кислоты;

4. убихинон или кофермент Q, участвующий в переносе электронов и протонов в цепи тканевого дыхания;

5. фосфоаденозилфосфосульфат, участвующий в переносе сульфата;

6. глутатион, участвующий в окислительно-восстановительных реакциях.


Таблица 3.1. Коферментные функции витаминов

Коферментная форма

В 1 -тиамин

тиаминдифосфат

транскетолаза

пируватдегидрогеназа

В 2 -рибофлавин

флавинзависимые дегидрогеназы

В 3 -пантотеновая кислота

кофермент А (КоА)

реакции ацилирования

В 6 -пиридоксин

пиридоксаль-фосфат

аминотрансферазы

РР-никотинамид

НАД(НАДФ)-зависимые дегидрогеназы

Фолиевая кислота

ТГФК (тетрагидрофолиевая кислота)

перенос одноуглеродных групп

Кофакторы – ионы металлов

Более 25 % всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Рассмотрим их роль в ферментативном катализе.


Роль металлов в присоединении субстрата в активном центре фермента.

Ионы металла выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур.


Ионы металлов – стабилизаторы молекулы субстрата.

Для некоторых ферментов субстратом служит комплекс превращаемого вещества с ионом металла. Например, для большинства киназ в качестве одного из субстратов выступает не молекула АТФ, а комплекс Mg 2+ -АТФ. В этом случае ион Mg 2+ не взаимодействует непосредственно с ферментом, а участвует в стабилизации молекулы АТФ и нейтрализации отрицательного заряда субстрата, что облегчает его присоединение к активному центру фермента.

Схематично роль кофактора при взаимодействии фермента и субстрата можно представить как комплекс E-S-Me, где Е – фермент, S – субстрат, Ме – ион металла.


Ионы металлов – стабилизаторы активного центра фермента.

В некоторых случаях ионы металлов служат «мостиком» между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, облегчая присоединение к нему субстрата и протекание химической реакции. В ряде случаев ион металла может способствовать присоединению кофермента. Перечисленные выше функции выполняют такие металлы, как Mg 2+ , Mn 2+ , Zn2+, Co 2+ , Mo 2+ . В отсутствие металла эти ферменты активностью не обладают. Такие ферменты получили название «металлоэнзимы».

К металлоэнзимам относят, например, фермент пируваткиназу.


Роль металлов в стабилизации структуры фермента.

Ионы металлов обеспечивают сохранение вторичной, третичной, четвертичной структуры молекулы фермента. Такие ферменты в отсутствие ионов металлов способны к химическому катализу, однако они нестабильны. Их активность снижается и даже полностью исчезает при небольших изменениях рН, температуры и других незначительных изменениях внешнего окружения. Таким образом, ионы металлов выполняют функцию стабилизаторов оптимальной конформации белковой молекулы.

Иногда в стабилизации вторичной и третичной структуры принимают участие ионы щёлочноземельных металлов. Так, для поддержания третичной конформации пируваткиназы необходимы ионы К + .

Для стабилизации четвертичной структуры алкогольдегидрогеназы, катализирующей реакцию окисления этанола, необходимы ионы цинка.


Роль металлов в ферментативном катализе

Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.


Участие металлов в электрофильном катализе.

Наиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающие в качестве электрофилов. Это, в первую очередь, такие металлы, как Zn 2+ , Fe 2+ , Mn 2+ , Cu 2+ . Ионы щелочных металлов, такие так Na + и К + , не обладают этим свойством.

В ходе электрофильного катализа ионы металлов часто участвуют в стабилизации промежуточных соединений.

Участие металлов в окислительно-восстановительных реакциях. Ионы металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон.

Благодаря этому свойству цитохромы участвуют в окислительно-восстановительных реакциях.

Активный центр фермента

Участок молекулы фермента, который специфически взаимодействует с субстратом, называется активным центром. Активный центр – это уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие её с молекулой субстрата и принимающая прямое участие в акте катализа. У сложных ферментов в состав активного центра входит также кофактор. В активном центре условно различают каталитический участок, непосредственно вступающий в химическое взаимодействие с субстратом и участок связывания, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом.


Свойства активных центров ферментов:

1. На активный центр приходится относительно малая часть общего объема фермента.

2. Активный центр имеет форму узкого углубления или щели в глобуле фермента.

3. Активный центр – это трехмерное образование, в формировании которого участвуют функциональные группы линейно удаленных друг от друга аминокислот.

4. Субстраты относительно слабо связываются с активным центром.

5. Специфичность связывания субстрата зависит от строго определенного расположения атомов и функциональных групп в активном центре.


У некоторых регуляторных ферментов имеется еще один центр, называемый аллостерическим или регуляторным. Он пространственно разделен с активным центром.


Аллостерический центр – это участок молекулы фермента, с которым связываются определенные обычно низкомолекулярные вещества (аллостерические регуляторы), молекулы которых не сходны по строению с субстратом. Присоединение регулятора к аллостерическому центру приводит к изменению третичной и четвертичной структуры молекулы фермента и, соответственно, конформации активного центра, вызывая снижение или повышение ферментативной активности.

Механизм действия ферментов

В любой ферментативной реакции выделяют следующую стадийность:

E + S ↔ ↔E + P

где Е – фермент, S – субстрат, – фермент-субстратный комплекс, Р – продукт.


Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.


Энергетические изменения при химических реакциях

Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружения остаётся постоянной, при этом химическая система стремится к снижению упорядоченности (увеличению энтропии). Для понимания энергетики химической реакции недостаточно знать энергетический баланс входящих и выходящих из реакции веществ. Необходимо учитывать изменения энергии в процессе данной химической реакции и роль ферментов в динамике этого процесса.

Чем больше молекул обладает энергией, превышающей уровень Еа (энергия активации) тем выше скорость химической реакции. Повысить скорость химической реакции можно нагреванием. При этом увеличивается энергия реагирующих молекул. Однако, для живых организмов высокие температуры губительны, поэтому в клетке для ускорения химических реакций используются ферменты. Ферменты обеспечивают высокую скорость реакций при оптимальных условиях, существующих в клетке, путём понижения уровня Еа. Таким образом, ферменты снижают высоту энергетического барьера, в результате чего возрастает количество реакционноспособных молекул, и, следовательно, увеличивается скорость реакции.


Роль активного центра в ферментативном катализе

В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контакт с субстратом вступает лишь небольшая часть молекулы фермента, обычно от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Роль остальных аминокислотных остатков состоит в обеспечении правильной конформации молекулы фермента для оптимального протекания химической реакции.

Активный центр на всех этапах ферментативного катализа нельзя рассматривать как пассивный участок для связывания субстрата. Это комплексная молекулярная «машина», использующая разнообразные химические механизмы, способствующие превращению субстрата в продукт.

В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Это свойство активного центра называют эффектом сближения и ориентации реагентов. Такое упорядоченное расположение субстратов вызывает уменьшение энтропии и, как следствие, снижение энергии активации (Еа), что определяет каталитическую эффективность ферментов.

Активный центр фермента также способствует дестабилизации межатомных связей в молекуле субстрата, что облегчает протекание химической реакции и образование продуктов. Это свойство активного центра называют эффектом деформации субстрата.

Молекулярные механизмы ферментативного катализа

Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт.


Выделяют 2 основных механизма ферментативного катализа:

1. кислотно-основной катализ

2. ковалентный катализ.


Кислотно-основной катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ – часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме – кислоты (доноры протона), в депротонированной – основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.


Ковалентный катализ

Ковалентный катализ основан на атаке нуклеофильных (отрицательно заряженных) или электрофильных (положительно заряженных) групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом или функциональной группой аминокислотного остатка (как правило, одной) активного центра фермента.

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, - пример механизма ковалентного катализа, когда ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Термин «сериновые протеазы» связан с тем, что аминокислотный остаток серина входит в состав активного центра всех этих ферментов и участвует непосредственно в катализе. Рассмотрим механизм ковалентного катализа на примере химотрипсина, осуществляющего гидролиз пептидных связей при переваривании белков в двенадцатиперстной кишке. Субстратами химотрипсина служат пептиды, содержащие аминокислоты с ароматическими и циклическими гидрофобными радикалами (Фен, Тир, Три), что указывает на участие гидрофобных сил в формировании фермент-субстратного комплекса.

Специфичность действия ферментов

Ферменты обладают более высокой специфичностью действия по сравнению с неорганическими катализаторами. Различают специфичность по отношению к типу химической реакции, катализируемой ферментом, и специфичность по отношению к субстрату. Эти два вида специфичности характерны для каждого фермента.

Специфичность по отношению к субстрату – это предпочтительность фермента к субстрату определенной структуры в сравнении с другими субстратами.


Различают 4 вида субстратной специфичности ферментов:

1. Абсолютная специфичность – способность фермента катализировать превращение только одного субстрата. Например – глюкокиназа фосфорилирует только глюкозу, аргиназа расщепляет только аргинин, уреаза – мочевину.

2. Относительная специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи. Например – липаза расщепляет сложноэфирную связь в триацилглицеролах.

3. Относительная групповая специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи, но требуется наличие определенных функциональных групп, входящих в состав субстратов. Например, все протеолитические ферменты расщепляют пептидную связь, но пепсин – образованную аминогруппами ароматических аминокислот, химотрипсин – образованную карбоксильными группами этих же аминокислот, трипсин – пептидную связь, образованную карбоксильной группой лизина, аргинина.

4. Стереохимическая специфичность – фермент катализирует превращение только одного стереоизомера. Например, бактериальная аспартатдекарбоксилаза катализирует декарбоксилирование только L-аспартата и не действует на D-аспарагиновую кислоту.


Специфичность по отношению к реакции

Каждый фермент катализирует одну реакцию или группу реакций одного типа. Часто одно и то же химическое соединение выступает как субстрат для разных ферментов, причем каждый из них катализирует специфическую для него реакцию, приводящую к образованию разных продуктов. Специфичность по типу реакции лежит в основе единой классификации ферментов.

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента молоко превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства сахара, маргаринов, йогуртов, пива, кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе из греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живим организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно 20 видов аминовеществ. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разгруппированы на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а с остатков глюкозы создают дисахариды.

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненноважное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтоб снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно с названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание лактозы;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает крахмал в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • и других минералов;
  • ксиланаза – расщепляет глюкозу из зерновых.

Катализаторы в продуктах

Ферменты имеют решающее значение для здоровья, поскольку помогают организму расщеплять пищевые компоненты до состояния, пригодного для использования питательных веществ. Кишечник и поджелудочная железа производят широкий спектр ферментов. Но кроме этого, многие их полезных веществ, способствующих пищеварению, содержатся также и в некоторых продуктах.

Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить авокадо. В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

Кроме того, что банан, пожалуй, самый известный источник калия, он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, картофеле, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

Экстремофилы и промышленность

Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

Более того, «услуги» ферментов в таких случаях обходятся дешевле, чем синтетических аналогов. Кроме того, натуральные вещества являются биоразлагаемыми, что делает их использование безопасным для экологии. В природе существуют микроорганизмы, способные расщепить ферменты на отдельные аминокислоты, которые затем становятся компонентами новой биологической цепочки. Но это, как говорится, уже совсем другая история.

· Структура и механизм действия ферментов · Множественные формы ферментов · Медицинское значение · Практическое использование · Примечания · Литература ·

Активность ферментов определяется их трёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на этот субстрат, и кроме этого химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа.

В активном центре условно выделяют:

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной «шубы»
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (к примеру, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (по факту происходит другая реакция), к примеру:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. К примеру, реакции синтеза биополимеров зачастую сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок»

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата. Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. В тоже время, не смотря на то, что эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок». Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое даёт возможность ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин (протеаза, участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большая часть кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Зачастую конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи - важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Вверх