Составляющие компоненты системы. Элемент системы - это что такое? Примеры элементов системы. Элементы экономической системы. Системообразующие и вспомогательные элементы

Общность понятия «система» затрудняет его адекватную формализацию, но в общем виде она может быть представлена как целостное образование, комплекс взаимосвязанных элементов, обладающих благодаря своему единению качественно новыми характеристиками, относительно индифферентных к внешней среде, причем каждая система выступает элементом системы более высокого порядка, а любой элемент системы – системой более низкого порядка.

Очень важно, что система есть «комплекс избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношение приобретает характер взаимоСОдействия компонентов на получение фокусированного полезного результата» (П. К. Анохин).

Функциональная система характеризуется тремя принципиальными моментами: во-первых, в совокупность вовлекаются только специально выбранные компоненты; во-вторых, компоненты не просто взаимодействуют, а взаимосо действуют для чего-то конкретного и определенного; в-третьих, в качестве системообразующего фактора фиксируется получение полезного результата.

Отличительными признаками системы выступают:

1) наличие взаимосвязанных частей в объекте;

2) взаимодействие между частями объекта;

3) упорядоченность данного взаимодействия для достижения общей цели системы.

Все системы имеют непременные атрибуты (модифицируя позицию В. Г. Афанасьева):

Интегративные качества;

Компоненты и элементы системы;

Структуру;

Общую цель и комплекс подцелей;

Взаимоотношения между элементами;

Функции системы и ее компонентов;

Включенность в более сложную систему в статусе компонента и элемента;

Историчность;

Внутренние и внешние возмущающие воздействия;

Структуру управления системой;

Информацию.

Базовым атрибутом системы выступает элемент системы. Под элементом понимают простейшую неделимую часть системы, которая обладает на взгляд субъекта действия (познания) определенной целостностью, состояние и функциональные особенности которой могут быть измерены и описаны в терминах, и которая может иметь отношения с другими частями рассматриваемой совокупности, а также с ее окружением (средой). Кроме функциональной характеристики, минимальность определяется самим субъектом исследования как достаточная часть, удовлетворяющая познавательной и преобразовательной потребности.

1. Упругий элемент – противостоящий внешним воздействиям, не воспринимающий их, способный только к однозначной передаче

В отсутствии изменения i элемент находится в состоянии покоя.

2. Рефлексивный элемент – обладает внутренним движением и осуществляет внутреннее преобразование по какому-либо закону и алгоритму.

Частный случай рефлексивности элемента – нейтральный.

3. Элемент – потребитель – воспринимает воздействие в данных условиях без образования направленного эффекта.


4. Элемент – источник – образует в данных условиях направленный эффект «Р» в отсутствии понуждающего внешнего воздействия.


5. Полирецепторный элемент – рефлексивный элемент, образующий направленное воздействие при условии восприятия нескольких понуждающих воздействий.


6. Полиэффекторный элемент – рефлексивный элемент, образующий воздействия по нескольким направлениям при восприятии одного понуждающего воздействия.


7. Полиэлемент – рефлексивный элемент, образующий воздействия по нескольким направлениям при условии восприятия нескольких внешних воздействий.


8. Полиисточник – источник, образующий в данных условиях воздействия по нескольким направлениям.


9. Полипотребитель – потребитель, воспринимающий воздействия по нескольким внешним связям.


Вторым важнейшим атрибутом системы выступают взаимоотношения между элементами или связи. По-другому межэлементарную связь можно определить как каждую из степеней свободы данного элемента, действительно осуществленную в виде определенного взаимоотношения, взаимодействия с другими элементами данной системы, а также с его средой. Это понятие входит в любое определение сис­темы и обеспечивает возникновение и сохранение струк­туры и целостных свойств системы, характеризует какее строение, так и функционирование. Предполагается, что связи существуют ме­жду всеми системными элементами и подсистемами.

Взаимоотношения могут быть:

1. Нейтральными , когда:

1 элемент 2 элемент


где а , в – сила воздействия;

а = в , но противоположны по направлению.

Особенности:

Подобная связь не является статичной.

При любых изменениях воздействие и противодействие остаются равными по величине в каждый рассматриваемый момент их отношений, их геометрическая сумма всегда равна нулю в эти моменты.

Относительная неподвижность (статичность) элементов – есть частный случай нейтральности, когда величины воздействия и противодействия неизменны на рассматриваемом отрезке времени.

Противодействие считается полным, если оно равно по величине воздействию в рассматриваемом диапазоне его изменений.

2. Функциональными , когда:

1) 1 элемент 2 элемент


2) 1 элемент 2 элемент

где а , в – сила воздействия.

Особенности:

Воздействующий элемент обладает направленным эффектом (наличие эффекторных свойств) по отношению к противодействующему.

Противодействующий элемент обладает рецепторным эффектом (наличие рецепторных свойств), т. е. способностью воспринимать внешнее воздействие.

Примечание. В реальных условиях всякий элемент в той или иной мере в различных отношениях обладает и эффекторными и рецепторными свойствами.

Нейтральная связь может превратиться в функциональную при неполном противодействии одной из сторон взаимодействия.

В результате подобных взаимоотношений в случае 2.1 в = 0, сила воздействия первого элемента максимальна и второй элемент может измениться структурно и функционально; в случае 2.2 а > в , сила воздействия первого элемента превосходит силу противодействия второго элемента, что также может приводить к структурно-функциональным изменениям во втором элементе системы .

Сетка связей достаточно обширна (по классификации И. В. Блауберга и Э. Г. Юдина):

Связи взаимодействия;

Связи генезиса;

Связи преобразования;

Связи строения;

Связи функционирования;

Связи развития;

Связи управления.

Связи могут подразделяться по характеру их материальной реализации на:

1) вещественные;

2) энергетические;

3) информационные;

по их месту и структуре:

1) прямые;

2) обратные;

по характеру их проявления:

1) детерминированные;

2) вероятностные;

3) хаотические;

4) непрерывные;

5) случайные;

6) регулярные;

7) нерегулярные.

Особенности: данные классификации относятся к конкретным реализациям систем и не характеризуют их как функциональные образования. Функциональность раскрывается в установлении причинно-следственных отношений между материальными образованиями.

Третьим атрибутом системы является компонент (подсистема), состоящий из ряда элементов системы, которые возможно объединить по схожим функциональным проявлениям. В системе может быть различное количество компонентов. Это зависит от основных функций системы (внутренних и внешних).

Система может быть расчленена на элементы не сразу, а путем последовательного разделе­ния на подсистемы. Подсистемы сами являются систе­мами и к ним, следовательно, относится все, что сказано о системе, в том числе и о ее целостности. Этим подсис­тема отличается от простой совокупности элементов, не объединенных целью и свойством целостности.

Четвертым атрибутом системы выступает структура системы. Под структурой понимается совокупность связей, взаимоотношений между всеми элементами и компонентами системы, между системой и внешней средой. Данные взаимосвязи обеспечивают существова­ние системы и ее основных свойств. Структурные свойст­ва обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, перенося закономерности, выявленные в одной из них, на другую (даже если эти системы имеют разную физическую природу). Структура может быть представлена графическим отображением, теоретико-множественным отношением, в виде матриц. Вид пред­ставления системы зависит от цели отображения.

Особенности определения понятия «структура» системы:

1. Структура всех возможных взаимоотношений в рассматриваемой совокупности отличается от структуры формируемой системы, такая структура называется полной структурой объекта.

2. Форма структуры прямо зависит от функционального среза как конкретной формы реакции данной совокупности на конкретное внешнее воздействие.

Системам как функциональным материальным образованиям с определенным глобальным эффектом свойственны следующие виды структур:

1. Внутренняя структура объекта – совокупность взаимоотношений компонентов без учета их внешних связей.

2. Функциональная структура – совокупность взаимоотношений, связанных непосредственно с функционированием каждого элемента в данной системе в направлении образования ее глобального эффекта.

3. Абсолютная структура – действительно возможная структура внешнего целого, рассматриваемого субъектом в качестве конкретно познаваемого объекта.

Исходя из важнейшей характеристики функциональных систем, выделяют два основных класса системных структур:

Нормальные структуры – структуры, в которых сохраняются все отношения и их направления, то есть:

1) элементы системы выделены на том структурном уровне, который рассматривается;

2) данные элементы неизменны и являются начальными структурными образованиями с точки зрения субъекта;

3) полная структура объекта остается неизменной в данном промежутке времени и в данных условиях;

4) норма существования структуры сохраняется неизменной.

Динамические структуры – структуры, изменяющиеся во времени, то есть:

1) количество и направление отношений между элементами системы изменяется;

2) в системе, в установившихся связях между элементами присутствует внутреннее движение;

3) изменяется элементарный состав системы.

Динамика структуры отражает динамику системы. Функциональная система может считаться изменчивой только при условии структурных перестроек при сохранении возможной функциональности каждой связи, включая и вновь образовавшиеся.

Изменение элементарного состава системы выступает вторичным фактором.

Понятия динамической структуры и динамической системы не тождественны. Динамическая система имеет больший объем, так как динамизм системы связан, помимо изменений в структуре, с возможными изменениями норм состояния ее элементов и элементарного состава. Таким образом могут происходить более глубинные изменения, чем только во взаимоотношениях между элементами.

Понятия нормальной и динамической структур, отнесенные к одной системе, есть взаимоотрицающие понятия, т. е. одна и та же система в одном промежутке времени не может иметь и нормальную и динамическую структуру.

Разрушение нормальной структуры не означает разрушение в смысле отмирания, уничтожения системы. Основной критерий системности заключен в глобальном эффекте системы, а не в структуре.

Поэтому динамическая структура, отрицая нормальную, отражает существо изменяющейся в этом отношении системы, но не прекращение ее существования. Образование глобального эффекта системы возможно в условиях происходящих изменений.

Таким образом, динамические системы – это системы с переменной структурой при относительной определенности их внешних проявлений, рассматриваемых в качестве их глобального эффекта.

Если рассматривать совокупность всех связей внутри системы, то такая структура будет внутренней. Если рассматривать совокупность всех связей как внутри системы, так и системы с внешней средой – такая структура называется полной структурой. Качественная система представляет собой единое целое, состоящее из множества различных составляющих, организованных на разных уровнях в особого рода целостности.

Пятым атрибутом системы выступают функции, понимаемые как деятельность, работа, внешнее прояв­ление свойств какого-либо объекта в данной системе отношений. Функции классифицируются по различным признакам в зависимости от целей управленца или исследователя.

Весьма важным атрибутом системы выступают свойства, понимаемые как качества параметров объектов, т. е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возмож­ность описывать объекты системы количественно, выра­жая их в единицах, имеющих определенную размер­ность. При этом они могут изменяться в результате функционирования системы.

Одним из ключевых атрибутов системы является цель, лежащая в основе развития системы и обеспе­чивающее ее целенаправленность (целесообразность). Цель можно определить как желаемый результат дея­тельности, достижимый в пределах некоторого интервала времени. Цель становится задачей, стоящей перед сис­темой, если указан срок ее достижения и конкретизиро­ваны количественные характеристики желаемого резуль­тата. Цель достигается в результате решения задачи или ряда задач, если исходная цель может быть подвергнута разделению на некоторую совокупность более простых (частных) подзадач.

Система – единство, состоящее из взаимосвязанных элементов, каждый из которых приносит что-то конкретное в уникальные характеристики целого .

Система обладает выраженным системным свойством, которым не обладает ни один из ее элементов в отдельности.

Система – совокупность элементов, находящихся в определенных отношениях и связях друг с другом, образующая единое целое для выполнения определённых функций.

Структура системы включает в себя ее элементы, связи между ними и атрибуты этих связей.

Элемент системы – это ее простейшая неделимая часть. Для того чтобы выделить элемент системы, сначала нужно разделить систему на подсистемы, способные выполнять относительно независимые функции.

Связь выражает отношения между элементами системы.

Атрибуты связи – это направленность, сила и характер, поэтому выделяют следующие виды связей.

1. По направленности:

– направленные связи (прямые и обратные);

– ненаправленные связи.

2. По силе:

– слабые;

– сильные.

3. По характеру:

– связи подчинения (линейные и функциональные);

– связи порождения.

Организация системы – это совокупность связей между ее элементами, характеризующаяся определенным порядком, внутренними свойствами, направленностью на функционирование.

Существуют системы различного рода (различной природы): биологические, технические, социально-экономические и др.

В ходе исследования различных систем были выявлены общие черты, характерные для систем различной природы . В частности, к ним относятся:

1) цельность системы (все её части служат достижению единой цели и обладают некоторыми общими свойствами, признаками и поведением);

2) величина (масштаб) системы (определяется разнообразием и количеством составляющих её элементов);

3) сложность системы (наличие большого количества и разнообразия связей между элементами как по вертикали, так и по горизонтали.

В связи с чем изменение в каком-либо одном компоненте влечёт за собой изменение в других);

4) поведение системы в любой момент времени имеет вероятностный характер;

5) наличие элементов конкурентной ситуации (характерно в первую очередь для наиболее сложных систем и предполагает, что обязательно существуют элементы, которые стремятся уменьшить эффективность системы);

6) делимость (возможность расчленения системы на составляющие её компоненты);

7) изолированность (совокупность элементов, образующих систему; связи между ними можно оградить от внешнего окружения и рассматривать изолированно, но эта изолированность относительна (абсолютна для закрытых систем);

8) множественность состояния частей целого (каждый элемент системы обладает своим поведением и состоянием, отличным от других и системы в целом);



9) структурность (любая система обладает структурой, т. е. совокупностью связей между частями целого);

10) иерархичность (любая система может быть последовательно расчленена на составляющие её компоненты сверху вниз – от более сложных и больших систем к подсистемам, компонентам и т. д.);

11) адаптивность (система обладает способностью предпринимать адекватные действия в ответ на многообразные действия внешних и внутренних факторов).

Существует множество классификаций систем в зависимости от целей исследования, они широко представлены в литературе (см., например, ).

Обобщённая классификация видов систем представлена на рис. 4.1.

Рис. 4.1. Классификация видов систем

Любая система управления в простейшем виде может быть представлена как совокупность двух взаимодействующих подсистем: субъекта управления (управляющей подсистемы) и объекта управления (управляемой подсистемы) .

Все организации являются системами открытого типа, тесно взаимосвязанными с внешней средой. На основе системного подхода строится процесс управления и обеспечивается достижение поставленных перед организацией целей.

Особенности организации как экономической системы следующие:

– изменчивость определенных параметров системы;

– уникальность и непредсказуемость системы и в то же время наличие предельных возможностей, обусловленных имеющимися ресурсами;

– способность противостоять разрушающим систему тенденциям;

– способность адаптироваться к изменяющимся условиям;



– способность изменять структуру и формировать варианты поведения;

– способность и стремление к формированию целей внутри системы.

В организации как системе различают следующие элементы:

1) функциональные области деятельности организации;

2) элементы производственного процесса;

3) элементы управления.

Системный подход изучения организации требует изучения всей совокупности связей, которые существуют между отдельными подразделениями организации как системы. Эта система связей является формой существования организационных отношений и отражает существование организации.

В составе системы организационных отношений (связей) выделяют группы однородных связей по какому-либо признаку (классификация), а именно:

1) классификация, в которой отражён различный статус:

– вертикальные связи (связи между подразделениями различного уровня);

– горизонтальные связи (связи между структурными подразделениями одного уровня);

2) классификация по направлениям связей:

– прямые связи;

– обратные связи.

Прямые и обратные связи могут быть вертикальными и горизонтальными;

3) классификация по содержанию связей:

– воздействие (однонаправленная связь; инициатором этой связи могут быть подразделения различного уровня (могут быть по вертикали и по горизонтали, может быть и субъект, и объект));

– противодействие (отрицательная обратная связь);

– взаимодействие (положительная обратная связь).

Значимость изучения системы отношений связей этой классификации определяется тем, что деятельностью любой организации является организация деятельности всех этих связей, совершенствование этих связей, т. е. создание условий для наиболее полного проявления этих связей.

Принцип обратной связи – это принцип любой системы.

Перечисленные группы отношений (связей) образуют систему внутренней связи внутри организации.

Большое значение для организации имеют внешние связи. Они оказывают большое влияние на эффективность функционирования организации. По характеру влияния выделяют 2 группы внешних связей:

1) связи, оказывающие прямое влияние (поставщики, потребители, конкуренты, законодательство, законодательная база и др.):

2) связи, оказывающие косвенное влияние (состояние мировой экономики, политическая обстановка в стране, научно-технический прогресс и др.).

Понятие элемента системы

По определœению элемент ― это составная часть сложного целого. В нашем понятии сложное целое ― это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент ― неделимая часть системы. Элемент ― часть системы, обладающая самостоятельностью по отношению ко всœей системе и неделимая при данном способе выделœения частей. Неделимость элемента воспринимается как нецелœесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними проявлениями в виде связей и взаимосвязей с остальными элементами и внешней средой.

Множество А элементов системы можно описать в виде :

А = {a i }, i = 1, ..., n , (1.1)

где a i i -й элемент системы;

n ― число элементов в системе.

Каждый a i элемент характеризуется m конкретными свойствами Z i 1 , ..., Z im (вес, температура и т. д.), которые определяют его в данной системе однозначно.

Совокупность всœех m свойств элемента a i будем называть состоянием элемента Z i :

Z i = (Z i 1 , Z i 2 , Z i 3 , ..., Z i k , ..., Z im ) (1.2)

Состояние элемента͵ исходя из различных факторов (времени, пространства, внешней среды и т. д.), может изменяться.

Последовательные изменения состояния элемента будем называть движением элемента .

Понятие связи

Связь ― совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами ― это значит выявить наличие зависимостей их свойств .

Множество Q связей между элементами a i и a j можно представить в виде :

Q = {q ij }, i , j = 1 ... n. (1.3)

Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи ― совокупность двусторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие ― совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие структуры системы

Структура системы ― совокупность элементов системы и связей между ними в виде множества .

D = {A , Q }. (1.4)

Структура является статической моделью системы и характеризует только строение системы и не учитывает множества свойств (состояний) ее элементов.

Понятие внешней среды

Система существует среди других материальных объектов, которые не вошли в систему и которые объединяются понятием ʼʼвнешняя средаʼʼ ― объекты внешней среды.

Вход характеризует воздействие внешней среды на систему, выход ― воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделœение некоторой области материального мира на две части, одна из которых воспринимается как система ― объект анализа (синтеза), а другая ― как внешняя среда.

Внешняя среда ― это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Лекцию разработал:

профессор В.И. Мухин

Понятие элемента системы - понятие и виды. Классификация и особенности категории "Понятие элемента системы" 2017, 2018.

Функциональная среда системы - характерная для системы совокупность законов, алгоритмов и параметров, по которым осуществляется взаимодействие (обмен) между элементами системы и функционирование (развитие) системы в целом.

Элемент системы - условно неделимая, самостоятельно функционирующая часть системы.

Однако ответ на вопрос, что является такой частью, может быть неоднозначным. Например, в качестве элементов стола можно назвать «ножки, ящики, крышку и т. д.», а можно - «атомы, молекулы», в зависимости от того, какая задача стоит перед исследователем.

Поэтому примем следующее определение: элемент - это предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели.

Компоненты и подсистемы.

Понятие подсистема подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы, и в частности имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства - целостности, коммуникативности и т. п., определяемые закономерностями систем.

Если же части системы не обладают такими свойствами, а представляют собой просто совокупности однородных элементов, то такие части принято называть компонентами.

Связь. Понятие связь входит в любое определение системы и обеспечивает возникновение и сохранение ее целостных свойств. Это понятие одновременно характеризует и строение (статику), и функционирование (динамику) системы.

Связь определяют как ограничение степени свободы элементов. Действительно, элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть своих свойств, которыми они потенциально обладали в свободном состоянии.

Связи можно охарактеризовать направлением, силой, характером (или видом).

По первому признаку связи делят на направленные и ненаправленные.

По второму - на сильные и слабые.

По характеру (виду) различают связи подчинения, порождения (или генетические), равноправные (или безразличные), управления.

Структура системы - совокупность связей, по которым обеспечивается энерго-, массо- и информационный обмен между элементами системы, определяющая функционирование системы в целом и способы ее взаимодействия с внешней средой.

Часто структуру системы оформляют в виде графа. При этом элементы являются вершинами графа, а ребра обозначают связи.

Если выделены направления связей, то граф является ориентированным. В противном случае - граф неориентированный.

Цель - заранее мыслимый результат сознательной деятельности человека.

Символически это определение системы представим следующим образом:

S ≡ < A, R, Z >,


где А – элементы;

R – отношения между

элементами;

Понятия, характеризующие функционирование и развитие системы

Процессы, происходящие в сложных системах, как правило, сразу не удается представить в виде математических соотношений или хотя бы алгоритмов.

Поэтому для того, чтобы хоть как-то охарактеризовать стабильную ситуацию или ее изменения, используют специальные термины, заимствованные теорией систем из теории автоматического регулирования, биологии, философии.

Состояние. Понятием «состояние» обычно характеризуют мгновенную фотографию, «срез» системы, остановку в ее развитии.

Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойства системы (давление, скорость, ускорение).

Поведение. Если система способна переходить из одного состояния в другое, то говорят, что она обладает поведением.

Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер, алгоритм.

Равновесие. Понятие равновесие определяют как способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое состояние сколь угодно долго.

Устойчивость. Под устойчивостью понимают способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (или в системах с активными элементами - внутренних) возмущающих воздействий.

Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия.

Возврат в это состояние может сопровождаться колебательным процессом. Соответственно в сложных системах возможны неустойчивые состояния равновесия.

Классификация систем

Признак Виды систем
1. Природа объекта Естественные Искусственные - реальные - абстрактные
2. Характер взаимоотношений со средой Открытые (непрерывный обмен) Закрытые (слабая связь)
3. Причинная обусловленность Детерминированные Вероятностные
4. Характер элементов экономические, социальные, технические, политические, биологические
5. Степень организованности Хорошо организованные Плохо организованные Самоорганизующиеся
6. По отношению к времени Статические Динамические
7. По степени сложности Малые и Большие Простые и Сложные
8. По однородности элементов Гомогенные Гетерогенные

Большие и сложные системы

Большие системы – те, моделирование которых затруднено вследствие их размерности, а сложные системы – те, для моделирования которых недостаточно информации.

Иногда выделяют еще «Очень сложные системы », для моделирования которых человечество не обладает нужной информацией. Это мозг, вселенная, социум.

При моделировании больших систем применяют метод декомпозиции, в котором снижение размерности осуществляется путем разбиения на подсистемы.

При моделировании сложных систем применяют специальные методы снижения неопределенности.

Вверх