Лекция Свойство. Величина. Основное уравнение измерения. Измерения. Проанализируйте определение счета, оценивания и измерения. Выделите их общие и отличительные признаки Термин физическая величина обозначает свойство

Скачать с Depositfiles

Лекция 1.Свойство. Величина. Основное уравнение измерения

2. Измерения

Детально величины, измерения и средства измерений изучаются в курсе «Метрология», который будет вам читаться на четвертом курсе. Здесь же мы рассмотрим основные моменты, знание которых потребуется нам в курсе «Геодезические приборы и измерения».

1. Свойство. Величина. Основное уравнение измерения

Все объекты окружающего мира характеризуются своими свойствами.

Например, можно назвать такие свойства предметов, как цвет, вес, длина, высота, плотность, твердость, мягкость и т.д. Однако из того факта, что некоторый предмет цветной или длинный, мы ничего, кроме того, что у него есть свойство цвета или протяженности, не узнаем.

Для количественного же описания различных свойств, процессов и физических тел вводится понятие величины.

Все величины можно разделить на два вида: реальные и идеальные .

Идеальные величины относятся главным образом к математике и являются обобщением (моделью) конкретных реальных понятий. Нас они не интересуют.

Реальные величины делятся, в свою очередь, на физические и нефизические .

К нефизическим следует отнести величины, присущие общественным (нефизическим) наукам – философии, социологии, экономике и т.д. Эти величины нас не интересуют.

Физическая величина в общем случае может быть определена как величина, свойственная материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. Именно эти величины и представляют для нас интерес.

Индивидуальность в количественном отношении понимают в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Например, каждый предмет на Земле обладает таким свойством как вес. Если взять несколько яблок, то каждое из них обладает весом. Но, в то же время, вес каждого яблока будет отличаться от веса других яблок.

Физические величины можно разделить на измеряемые и оцениваемые.

Физические величины, для которых по тем или иным причинам не может быть выполнено измерение или не может быть введена единица измерения, могут быть только оценены. Такие физические величины называются оцениваемыми . Оценку таких физических величин производят при помощи условных шкал. Например, интенсивность землетрясений оценивается по шкале Рихтера, твёрдость минералов – по шкале Мооса.

По степени условной независимости от других величин физические величины делятся на основные (условно независимые), производные (условно зависимые) и дополнительные .

Вся современная физика может быть построена на семи основных величинах, которые характеризуют фундаментальные свойства материального мира. К ним относятся семь физических величин, выбранных в системе СИ в качестве основных , и две дополнительные физические величины.

С помощью основных семи и двух дополнительных величин, введенных исключительно для удобства, образуется все многообразие производных физических величин и обеспечивается описание свойств физических объектов и явлений.

По наличию размерности физические величины делятся на размерные , т.е. имеющие размерность, и безразмерные .

Понятие размерности физической величины было введено Фурье в 1822 году.

Размерность качественной ее характеристикой и обозначается символом
, происходящим от слова dimension (англ. — размер, размерность). Размерность основных физических величин обозначается соответствующими заглавными буквами. Например, для длины, массы и времени

Размерность производной физической величины выражается через размерности основных физических величин с помощью степенного одночлена:

где ,
,, … – размерности основных физических величин;

, ,, … – показатели размерности.

При этом каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, а также нулем.

Если все показатели размерности равны нулю , то такая величина называется безразмерной .

Размер измеряемой величины является количественной ее характеристикой.

Например, длина доски это количественная характеристика доски. Сама же длина может быть определена только в результате измерения.

Совокупность чисел, отображающая различные по размеру однородные величины, должна быть совокупностью одинаково именованных чисел. Это именование является единицей физической величины или ее доли. Тот же пример с длиной доски. Имеется совокупность чисел, характеризующих длину различных досок: 110, 115, 112, 120, 117. Все числа именуются сантиметрами. Именование сантиметр является единицей физической величины, в данном случае единицей длины.

Например, метр, килограмм, секунда.

Например, 54.3 метра, 76.8 килограмм, 516 секунд.

Например, 54.3, 76.8, 516.

Все три перечисленных параметра связаны между собой соотношением

, (3.1) которое называется основным уравнением измерения .

2. Измерения

Из основного уравнения измерения следует, что измерение – это определение значения величины или, иначе, это сопоставление величины с ее единицей. Измерения физических величин производится с помощью технических средств. Можно дать следующее определение измерению.

Данное определение содержит четыре признака понятия измерение.

1. Измерять можно только физические величины (т.е. свойства материальных объектов, явлений, процессов).

2. Измерение – это оценивание величины опытным путем , т.е. это всегда эксперимент.

Нельзя назвать измерением расчетное определение величины по формулам и известным исходным данным.

3. Измерение осуществляется с помощью специальных технических средств – носителей размеров единиц или шкал, называемых средствами измерений .

4. Измерение – это определение значения величины, т.е. это сопоставление величины с ее единицей или шкалой . Такой подход выработан многовековой практикой измерений. Он вполне соответствует содержанию понятия «измерение», которой дал более 200 лет назад Л.Эйлер: « Невозможно определить или измерить одну величину иначе, как приняв в качестве известной другую величину этого же рода и указав соотношение, в котором она находится к ней » .

Измерение физической величины включает в себя два (вообще, может быть и несколько) этапа:

а) сравнение измеряемой величины с единицей ;

б) преобразование в форму, удобную для использования (различные способы индикации).

В измерениях различают:

а) принцип измерений – это физическое явление или эффект, положенные в основу измерений;

б) метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Все возможные измерения, встречающиеся в практике человека, можно классифицировать по нескольким направлениям.

1. Классификация по видам измерений :

а) прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно.

Примеры: измерение длины линии мерной лентой, измерение горизонтального или вертикального углов теодолитом;

б) косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.

Пример 1. Измерение длин линий параллактическим способом, при котором измеряется горизонтальный угол на марки базисной рейки, расстояние между которыми известно; искомая длина вычисляется по формулам, связывающим эту длину с горизонтальным углом и базисом.

Пример 2. Измерение длины линии светодальномером. В этом случае непосредственно измеряется не сама длина линии, а время прохождения электромагнитного импульса между излучателем и отражателем, установленными над точками, между которыми измеряется длина линии.

Пример 3. Определение пространственных координат точки земной поверхности с использованием Глобальной Навигационной Спутниковой Системы (ГНСС). В этом случае измеряются не координаты и даже не длины, а опять-таки время прохождения сигнала от каждого спутника до приемника. По измеренному времени косвенным образом определяются расстояния от спутников до приемника, а затем уже, опять-таки, косвенным способом, – координаты точки стояния.

в) совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.

Пример. Измерение длины металлического стержня и температуры, при которой измеряется длина стержня. Результатом таких измерений является определение коэффициента линейного расширения металла, из которого выполнен стержень, из-за изменения температуры.

г) совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

2. Классификация по методам измерений :

а) метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений;

примеры измерение давления по барометру или температуры по термометру;

б) метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой;

примеры:

прикладывая линейку с делениями к какой-либо детали, по сути сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров);

с помощью измерительного прибора сравнивают размер величины (например, угла), преобразованной в перемещение указателя (алидады), с единицей, хранимой шкалой этого прибора (горизонтальным кругом, деление круга – это мера), и проводят отсчет.

Характеристикой точности измерения является его погрешность или неопределенность .

При производстве измерений реальный объект измерения всегда заменяют его моделью, которая вследствие своего несовершенства отличается от реального объекта. Вследствие этого величины, характеризующие реальный объект также будут отличаться от аналогичных величин этого же объекта. Это приводит к неизбежным погрешностям измерений, которые в общем случае подразделяются на случайные и систематические.

Метод измерений. Выбор метода измерений определяется принятой моделью объекта измерения и доступными средствами измерений. При выборе метода измерений добиваются того, чтобы погрешность метода измерений, т.е. составляющая систематической погрешности измерений, обусловленная несовершенством принятых модели и метода измерений (иначе теоретическая погрешность), не сказывалась заметно на результирующей погрешности измерения, т.е. не превышала 30% от нее.

Модель объекта. Изменения измеряемых параметров модели в течение цикла наблюдений, как правило, не должны превышать 10% от заданной погрешности измерения. Если возможны альтернативы, то учитывают и экономические соображения: ненужное завышение точности модели и метода измерения приводят к необоснованным затратам. То же относится и к выбору средств измерений.

Средства измерений. Выбор средств измерений и вспомогательных устройств определяется измеряемой величиной, принятым методом измерений и требуемой точностью результатов измерений (нормами точности). Измерения с применением средств измерений недостаточной точности малоценны (даже бессмысленны), так как могут быть причиной неправильных выводов. Применение излишне точных средств измерений экономически невыгодно. Учитывают также диапазон изменений измеряемой величины, условия измерений, эксплуатационные качества средств измерений, их стоимость.

Основное внимание уделяют погрешностям средств измерений. Необходимо чтобы суммарная погрешность результата измерения
была меньше предельно допустимой погрешности измерений
, т.е.

— предельная погрешность, обусловленная оператором. <

Физическая величина и ее характеристика.

Все объекты материального мира обладают рядом свойств, позволяющих отличать один объект от другого.

Свойство объекта - ϶ᴛᴏ объективная особенность, проявляющаяся при его создании, эксплуатации и потреблении.

Свойство объекта должна быть выражено качественно - в виде словесного описания, и количественно - в виде графиков, цифр, диаграмм, таблиц.

Метрологическая наука занимается измерением количественных характеристик материальных объектов – физических величин.

Физическая величина - ϶ᴛᴏ свойство, в качественном отношении присущее многим объектам, а в количественном отношении индивидуально для каждого из них.

К примеру, массу имеют всœе материальные объекты, но у каждого из них величина массы индивидуальна.

Физические величины делятся на измеряемые и оцениваемые .

Измеряемые физические величины бывают выражены количественно в виде определœенного числа установленных единиц измерения.

К примеру , значение напряжения в сети составляет 220 В .

Физические величины, которые не имеют единицы измерения, бывают только оценены. К примеру, запах, вкус. Их оценка осуществляется дегустированием.

Некоторые величины можно оценить по шкале. К примеру: твердость материала - по шкале Викерса, Бринœеля, Роквелла, силу землетрясения - по шкале Рихтера, температуру - по шкале Цельсия (Кельвина).

Физические величины можно квалифицировать по метрологическим признакам.

По видам явлений они делятся на

а) вещественные , описывающие физические и физико-химические свойства веществ, материалов и изделий из них.

К примеру, масса, плотность, электрическое сопротивление (для измерение сопротивления проводника по нему должен проходить ток, такое измерение называют пассивным ).

б) энергетические , описывающие характеристики процессов преобразования, передачи и использования энергии.

К ним относятся: ток, напряжение, мощность, энергия . Эти физические величины называют активными . Οʜᴎ не требуют вспомогательного источника энергии.

Есть группа физических величин, которые характеризуют протекание процессов во времени, к примеру, спектральные характеристики, корреляционные функции.

По принадлежности к различным группам физических процессов, величины бывают

· пространственно-временные,

· механические,

· электрические,

· магнитные,

· тепловые,

· акустические,

· световые,

· физико-химические,

· ионизирующих излучений, атомной и ядерной физики.

По степени условной независимости физические величины делят на

· основные (независимые),

· производные (зависимые),

· дополнительные.

По наличию размерности физические величины делят на размерные и безразмерные.

Примером размерной величины является сила , безразмерной – уровень звуковой мощности .

Чтобы оценить количественно физическую величину вводится понятие размер физической величины.

Размер физической величины - это количественная определœенность физической величины, присущая конкретному материальному объекту, системе, процессу или явлению.

К примеру , каждое тело обладает определœенной массой, следовательно, их можно различать по массе, ᴛ.ᴇ. по размеру физической величины.

Выражение размера физической величины в виде некоторого числа принятых для нее единиц определœено как значение физической величины.

Значение физической величины - это выражение физической величины в виде некоторого числа принятых для нее единиц измерения.

Процесс измерения - ϶ᴛᴏ процедура сравнения неизвестной величины с известной физической величиной (сравниваемой) и в этой связи вводится понятие истинное значение физической величины.

Истинное значение физической величины - ϶ᴛᴏ значение физической величины, ĸᴏᴛᴏᴩᴏᴇ идеальным образом характеризует в качественном и количественном соотношении соответствующую физическую величину.

Истинное значение независимых физических величин воспроизведено в их эталонах.

Истинное значение применяют редко, больше пользуются действительным значением физической величины.

Действительное значение физической величины - ϶ᴛᴏ значение, полученное экспериментальным путем и несколько близкое к истинному значению.

Раньше было понятие ʼʼизмеряемые параметрыʼʼ, сейчас по нормативному документу РМГ 29-99 рекомендуется понятие ʼʼизмеряемые величиныʼʼ.

Физических величин много и их систематизируют. Система физических величин - это совокупность физических величин, образованная в соответствии с принятыми правилами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин.

В названии системы физических величин применяют символы величин, принятые как основные.

К примеру, в механике, где в качестве базовых приняты длина - L , масса - m и время - t , название системы соответственно - Lm t .

Система базовых величин, соответствующих международной системе единиц СИ выражается символами LmtIKNJ , ᴛ.ᴇ. применены символы базовых величин: длина - L , масса - М , время - t , сила тока - I , температура - K , количество вещества - N , сила света - J .

Основные физические величины не зависят от значений других величин этой системы.

Производная физическая величина - ϶ᴛᴏ физическая величина, входящая в систему величин и определяемая через основные величины этой системы. К примеру, сила определяется как масса на ускорение.

3. Единицы измерения физических величин .

Единицей измерений физической величины принято называть величина, которой по определœению присвоено численное значение равное 1 и которая применяется для количественного выражения однородных с ней физических величин.

Единицы физических величин объединяют в систему. Первая система была предложена Гауссом К (миллиметр, миллиграмм, секунда). Сейчас действует система СИ, ранее был стандарт стран СЭВ.

Единицы измерений делятся на основные, дополнительные, производные и внесистемные.

В системе СИ семь базовых единиц:

· длина (метр),

· масса (килограмм),

· время (секунда),

· термодинамическая температура (кельвин),

· количество вещества (моль),

· сила электрического тока (ампер ),

· сила света (кандела).

Таблица 1

Обозначение базовых единиц системы СИ

Физическая величина Единица измерений
Наименование Обозна-чение Наименование Обозначение
русское международное
основные
Длина L метр м m
Масса m килограмм кг kg
Время t секунда с s
Сила электрического тока I ампер А А
Термодинамическая температура Т кельвин К К
Количество вещества n, v моль моль mol
Cила света J кандела кд сd
дополнительные
Плоский угол - радиан рад rad
Телœесный угол - стерадиан ср sr

Примечание . Радиан - это угол между двумя радиусами окружности, дуга между которыми по длинœе равна радиусу. В градусном исчислении радиан равен 57 0 17 ’ 48 ’’ .

Стерадиан - ϶ᴛᴏ телœесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной по длинœе равной радиусу сферы. Измеряют телœесный угол путем определœения плоских углов и проведения дополнительных расчетов по формуле:

Q = 2p (1 - соsa/2),

где Q - телœесный угол, a - плоский угол при вершинœе конуса, образованного внутри сферы данным телœесным углом.

Телœесному углу 1 ср соответствует плоский угол, равный 65 0 32 ’ , углу p ср - плоский угол 120 0 , углу 2pср - 180 0 .

Дополнительные единицы СИ использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин.

Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, т.к. большинство важных для практики значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами (2p, p/2 ).

Производными называют единицы измерения, получаемые с помощью уравнений связи между физическими величинами. К примеру, единица сила в СИ – ньютон (Н ):

Н = кг∙м/с 2 .

Несмотря на то, что система СИ универсальна, она разрешает применять некоторые внесистемные единицы , которые нашли широкое практическое применение (к примеру, гектар).

Внесистемными называют единицы, не вошедшие ни в одну из общепринятых систем единиц физических величин.

Для многих практических случаев выбранные размеры физических величин неудобны - чересчур малы или велики. По этой причине в практике измерений часто пользуются кратными и дольными единицами.

Кратной принято называть единица в целое число раз больше системной или внесистемной единицы. К примеру, кратная единица 1км = 1000 м .

Дольной принято называть единица, в целое число раз меньше системной или внесистемной единицы. К примеру, дольная единица 1 см = 0,01 м .

После принятия метрической системы мер была принята десятичная система образования кратных и дольных единиц, соответствующая десятичной системе нашего числового счета. К примеру, 10 6 мега , а 10 -6 микро .

Физическая величина и ее характеристика. - понятие и виды. Классификация и особенности категории "Физическая величина и ее характеристика." 2017, 2018.

Измерение – совокупность преимущественно экспериментальных операций, выполняемых с помощью технического средства, хранящего единицу величины, позволяющего сопоставить измеряемую величину с ее единицей и получить

искомое значение величины. Это значение называют результатом измерения.

Для установления различия в количественном значении отображаемого объекта введено понятие физической величины.

Физической величиной (ФВ) называется одно из свойств физического объекта (явления, процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого объекта (рис. 4.1).

Например, плотность, напряжение, показатель преломления и пр.

Так, используя измерительный прибор, например вольтметр постоянного электрического тока, мы измеряем напряжение в вольтах той или иной электрической цепи, сравнивая положение указателя (стрелки) с единицей электрического напряжения, хранимой шкалой вольтметра. Найденное значение напряжения как некоторое число вольт представляет результат измерения.

Рис. 4.1.

Отличительным признаком величины может быть единица измерения, методика выполнения измерения, стандартный образец или их комбинация.

При практической необходимости измерить можно не только физическую величину, но и любой физический и нефизический объект.

Если масса какого-либо тела составляет 50 кг, то речь идет о размере физической величины.

Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту (явлению, процессу).

Истинный размер физической величины является объективной реальностью, которая не зависит от того, измеряют соответствующую характеристику свойств объекта или нет. Действительное значение физической величины находится экспериментальным путем. От истинного значения оно отличается величиной погрешности.

Размер величины зависит от того, какая единица принята при измерениях величины.

Размер может выражаться в виде отвлеченного числа, без указания единицы измерения, что соответствует числовому значению физической величины. Количественная оценка физической величины, представленная числом с указанием единицы этой величины, называется значением физической величины.

Можно говорить о размерах разных единиц данной физической величины. В этом случае размер, например, килограмма отличается от размера фунта (1 ф. = 32 лотам = = 96 золотникам = 409,512 г), пуда (1 п. = 40 ф. = 1280 лотам = = 16,3805 кг) и т.д.

Следовательно, разные толкования физических величин в разных странах должны быть учтены, иначе это может привести к непреодолимым затруднениям, даже к катастрофам.

Так, в 1984 г. канадский пассажирский самолет Boeing-647 произвел вынужденную посадку на автомобильный полигон после того, как при полете на высоте 10 тыс. м отказали двигатели по причине израсходованного горючего. Объяснением этого происшествия явилось то, что на самолете приборы были градуированы в литрах, а приборы канадской авиакомпании, заправлявшей самолет, были градуированы в галлонах (примерно 3,8 л). Таким образом, горючего было заправлено почти в четыре раза меньше, чем требовалось.

Итак, если имеется некоторая величина X, принятая для нее единица измерения равна [X], то значение конкретной физической величины может быть вычислено по формуле

Х = q [Х ], (4.1)

где q – числовое значение физической величины; [X ] – единица физической величины.

Например, длина трубы l = 5м, где l – значение длины, 5 – ее числовое значение, м – принятая в данном случае единица длины.

Уравнение (4.1) называется основным уравнением измерений, показывающим, что числовое значение величины зависит от размера принятой единицы измерения.

В зависимости от области сопоставления величины могут быть однородные и неоднородные. Например, диаметр, длина окружности, длина волны, как правило, рассматриваются как однородные величины, относящиеся к величине, называемой длиной.

В рамках одной системы величин однородные величины имеют одинаковую размерность. Однако величины одинаковой размерности не всегда являются однородными. Например, момент силы и энергия не являются однородными величинами, но имеют одинаковую размерность.

Система величин представляет собой совокупность величин вместе с совокупностью непротиворечивых уравнений, связывающих эти величины.

Основная величина представляет собой величину, которая условно выбирается для данной системы величин и входит в набор основных величин. Например, основные величины системы СИ. Основные величины не связаны друг с другом.

Производная величина системы величин определяется через основные величины этой системы. Например, в системе величин, где основными величинами являются длина и масса, массовая плотность является производной величиной, которая определяется как частное от деления массы на объем (длина в третьей степени).

Кратная единица получается путем умножения данной единицы измерения на целое число, большее, чем единица. Например, километр есть десятичная единица, кратная метру; а час есть недесятичная единица, кратная секунде.

Дольная единица получается путем деления единицы измерения на целое число, большее, чем единица. Например, миллиметр есть десятичная единица, дольная от метра.

Внесистемная единица измерения не принадлежит к данной системе единиц. Например, день, час, минута – это внесистемные единицы измерения по отношению к системе СИ.

Введем еще одно важное понятие – измерительное преобразование.

Под ним понимается процесс установления взаимно однозначного соответствия между размерами двух величин: преобразуемой величины (входной) и преобразованной в результате измерения (входной).

Множество размеров входной величины, подвергаемой преобразованию с помощью технического устройства – измерительного преобразователя, называется диапазоном преобразования.

Измерительное преобразование может осуществляться различным образом в зависимости от видов физических величин, которые принято подразделять на три группы.

Первая группа представляет величины, на множестве размеров которых определены только их отношения в виде сопоставлений "слабее – сильнее", "мягче – тверже", "холоднее – теплее" и др.

Указанные отношения устанавливаются на основе теоретических или экспериментальных исследований и называются отношениями порядка (отношениями эквивалентности).

К величинам первой группы относятся, например, сила ветра (слабый, сильный, умеренный, шторм и т.д.), твердость, характеризуемая способностью исследуемого тела сопротивляться вдавливанию или царапанию.

Вторая группа представляет величины, для которых отношения порядка (эквивалентности) определяются не только между размерами величин, но также между разностями величин в парах их размеров.

К ним относятся, например, время, энергия, температура, определяемая по шкале жидкостного термометра.

Возможность сравнения разностей размеров этих величин заключена в определении величин второй группы.

Так, при использовании ртутного термометра разности температур (например, в пределах от +5 до +10°С) считаются равными. Таким образом, в данном случае имеет место как отношение порядка величин (25 "теплее", чем 10°С), так и отношение эквивалентности между разностями в парах размеров величин: разность пары (25–20°С) соответствует разности пары (10–5°С).

В обоих случаях отношение порядка однозначно устанавливается с помощью средства измерений (измерительного преобразователя), каким является упомянутый жидкостной термометр.

Нетрудно сделать вывод, что температура относится к величинам и первой, и второй групп.

Третья группа величин характеризуется тем, что на множестве их размеров (кроме указанных отношений порядка и эквивалентности, свойственных величинам второй группы) возможно выполнение операций, подобных сложению или вычитанию (свойство аддитивности).

К величинам третьей группы относится значительное число физических величин, например, длина, масса.

Так, два тела массой каждое 0,5 кг, поставленные на одну из чашек равноплечных весов, уравновешиваются гирей массой 1 кг, помещенной на другую чашу.

Физической величиной называется одно из свойств физического объекта (явления, процесса), которое является общим в качественном отношении для многих - физических объектов, отличаясь при этом количественным значением.

Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.).

В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.

Это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

Это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Это значение, полученное при измерении с применением конкретных методов и средств измерений.

9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.

По характеру изменения измеряемой величины - статические и динамические измерения.

Динамическое измерение - измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

Статическое измерение - измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений - не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические (состав, химические свойства, концентрация) , радиотехнические и т. д.

    Классификация измерений по способу получения результата (по виду).

По способу получения результатов измерений различают: прямые, косвенные, совокупные и совместные измерения.

Прямыми называют измерения, при которых искомое значение измеряемой величины находят непосредственно из опытных данных.

Косвенными называют измерения, при которых искомое значение измеряемой величины находят на основании известной зависимости между измеряемой величиной и величинами, определяемыми с помощью прямых измерений.

Совокупными называют измерения, при которых одновременно измеряются несколько одноименных величин и определяемое значение находят, решая систему уравнений, которую получают на основании прямых измерений одноименных величин.

Совместными называют измерения двух или более неодноименных величин для нахождения зависимости между ними.

    Классификация измерений по условиям, определяющим точность результата и по количеству измерений для получения результата.

По условиям, определяющим точность результата, измерения делятся на три класса:

1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение - это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения - это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, - четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

    Классификация случайных погрешностей измерений.

Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

1)Грубая- не превышает допустимую погрешность

2)Промах- грубая погрешность, зависит от человека

3)Ожидаемая- полученная в результате эксперимента при созд. условиях

Понятие о метрологии

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Она базируется на комплексе терминов и понятий, наиболее главные из которых приведены ниже.

Физическая величина – свойство, в качественном отношении общее многим физическим объектам, но в количественном отношении индивидуально для каждого объекта. Физическими величинами являются длина, масса, плотность, сила, давление и др.

Единицей физической величины считается та величина, которой по определению присвоено значение равное 1.Например, масса 1кг, сила 1Н, давление 1Па. В различных системах единиц единицы одной и той же величины могут отличаться по размеру. Например, для силы 1кгс ≈ 10Н.

Значение физической величины – численная оценка физической величины конкретного объекта в принятых единицах. Например, значение массы кирпича 3,5 кг.

Техническое измерение – определение значений различных физических величин специальными техническими методами и средствами. В ходе лабораторных испытаний определяют значения геометрических размеров, массы, температуры, давления, силы и др. Все технические измерения должны отвечать требованиям единства и точности.

Прямое измерение – экспериментальное сравнение данной величины с другой, принятой за единичную, посредством отсчета по шкале прибора. Например, измерение длины, массы, температуры.

Косвенные измерения – результаты, полученные с использованием результатов прямых измерений путем вычислений по известным формулам. Например, определение плотности, прочности материала.

Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо, для того чтобы возможно было сопоставить результаты измерений, выполненных в различных местах, в различное время, с использованием разнообразных приборов.

Точность измерений – качество измерений, отражающее близость полученных результатов к истинному значению измеряемой величины. Различают истинное и действительное значение физических величин.

Истинное значение физической величины в идеале отражает в качественном и количественном отношениях соответствующие свойства объекта. Истинное значение свободно от ошибок измерения. Так как все значения физической величины находятся опытным путем и они содержат ошибки измерений, то истинное значение остается неизвестным.

Действительное значение физической величины находят экспериментальным путем. Оно настолько приближено к истинному значению, что для определенных целей может быть использовано вместо него. При технических измерениях значение физической величины, найденное с допустимой техническими требованиями погрешностью, принимают за действительное значение.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Поскольку истинное значение измеряемой величины остается неизвестным, на практике лишь приближенно оценивают погрешность измерений, сравнивая результаты измерения со значением этой же величины, полученным с точностью в несколько раз более высокой. Так погрешность измерения размеров образца линейкой, которая составляет ± 1мм, можно оценить, измерив образец штангенциркулем с погрешностью не более ±0,5мм.

Абсолютная погрешность выражается в единицах измеряемой величины.

Относительная погрешность - отношение абсолютной погрешности к действительному значению измеряемой величины.

Средства измерений – технические средства, используемые при измерениях и имеющие нормированные метрологические свойства. Средства измерения делятся на меры и измерительные приборы.

Мера – средство измерения, предназначенное для воспроизведения физической величины заданного размера. Например, гиря – мера массы.

Измерительный прибор – средство измерений, которое служит для воспроизведения измерительной информации в форме, доступной для восприятия наблюдателем. Простейшие измерительные приборы называют измерительным инструментом. Например, линейка, штангенциркуль.

Основными метрологическими показателями измерительных приборов являются:

Цена деления шкалы – разность значений измеряемой величины, соответствующая двум соседним отметкам шкалы;

Начальное и конечное значение шкалы – соответственно наименьшее и наибольшее значение измеряемой величины, указанные на шкале;

Диапазон измерений – область значений измеряемой величины, для которой нормированы допускаемые погрешности.

Погрешность измерения –результат взаимного наложения ошибок, вызываемых различными причинами: погрешностью самих измерительных приборов, погрешностями, возникающими при пользовании прибором и считывании результатов измерений и погрешностей от несоблюдения условий измерения. При достаточно большом числе измерений среднее арифметическое результатов измерений приближается к истинному значению, а погрешность уменьшается.

Систематическая погрешность - погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях и возникает по вполне известным причинам. Например, смещение шкалы прибора.

Случайная погрешность – погрешность, в появлении которой не наблюдается закономерной связи с предыдущими или последующими ошибками. Ее появление вызывается множеством случайных причин, влияние которых на каждое измерение не может быть учтено заранее. К причинам, приводящим к появлению случайной погрешности можно отнести, например, неоднородность материала, нарушения при отборе проб, погрешность в показаниях прибора.

Если при проведении измерений появляется так называемая грубая погрешность , которая существенно повышает погрешность, ожидаемую при данных условиях, то такие результаты измерений исключают из рассмотрения как недостоверные.

Единство всех измерений обеспечивается установлением единиц измерений и разработкой их эталонов. С 1960 г. действует Международная система единиц (СИ), которая заменила сложную совокупность систем единиц и отдельных внесистемных единиц, сложившихся на основе метрической системы мер. В России система СИ принята в качестве стандартной, а области строительства ее применение регламентировано с1980г.

Лекция 2. ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ. ЕДИНИЦЫ ИЗМЕРЕНИЙ

2.1 Физические величины и шкал

2.2 Единицы физических величины

2.3. Международная система единиц (система СИ

2.4 Физические величины технологических процессов

производства продуктов питания

2.1 Физические величины и шкалы

Физическая величина – это свойство, общее в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальное для каждого из них.

Индивидуальное в количественном отношении следует понимать так, что одно и то же свойство для одного объекта может быть в определенное число раз больше или меньше, чем для другого.

Как правило, термин "физическая величина" применяется в отношении свойств или характеристик, которые можно оценить количественно. К физическим величинам относятся масса, длина, время, давление, температура и т. д. Все они определяют общие в качественном отношении физические свойства, количественные характеристики их могут быть различными.

Физические величины целесообразно различать на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования последних является важным отличительным признаком измеряемых ФВ.

Однако существуют такие свойства, как вкус, запах и т. д., для которых не могут быть введены единицы измерения. Такие величины могут быть оценены. Величины оценивают при помощи шкал.

По точности результата различают три вида значений физических величин: истинное, действительное, измеренное.

Истинное значение физической величины (истинное значение величины) – значение физической величины, которое в качественном и количественном отношениях идеальным образом отражало бы соответствующее свойство объекта.

К постулатам метрологии относят

Истинное значение определенной величины существует и оно постоянно

Истинное значение измеряемой величины отыскать невозможно.

Истинное значение физической величины может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений. Для каждого уровня развития измерительной техники мы можем знать только действительное значение физической величины, которое применяется вместо истинного.

Действительное значение физической величины – значение физической величины, найденное экспериментальным путем и настолько близкое к истинному значению, что для поставленной измерительной задачи может его заменить. Характерным примером, иллюстрирующим развитие измерительной техники, является измерение времени. В свое время единицу времени – секунду определяли как 1/86400 часть средних солнечных суток с погрешностью 10-7 . В настоящее время определяют секунду с погрешностью 10-14 , т. е. на 7 порядков приблизились к истинному значению определения времени на эталонном уровне.

За действительное значение физической величины обычно принимают среднее арифметическое ряда значений величины, полученных при равноточных измерениях, или арифметическое среднее взвешенное при неравноточных измерениях.

Измеренное значение физической величины – значение физической величины, полученное с применением конкретной техники.

По видам явлений ФВ делят на следующие группы:

- вещественные , т.е. описывающие физические и физико-химические свойства веществ. Материалов и изделий из них. К ним относятся масса, плотность, и тп. Это ФВ пассивные, т.к. для их измерения необходимо использовать вспомогательные источники энергии, с помощью которых формируется сигнал измерительной информации.

- энергетические – описывающие энергетические характеристики процессов преобразования, передачи и использования энергии (энергия, напряжение, мощность. Эти величины активные. Они могут преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

- характеризующие протекания процессов времени . К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По степени условной зависимости от других величин ФВ делят на основные и производные

Основная физическая величина – физическая величина, входящая в систему величин и условно принятая в качестве не зависящей от других величин этой системы.

Выбор физических величин, принимаемых за основные, и их количество осуществляется произвольно. В качестве основных прежде всего были выбраны величины, характеризующие основные свойства материального мира: длина, масса, время. Остальные четыре основные физические величины выбраны таким образом, чтобы каждая из них представляла один из разделов физики: сила тока, термодинамическая температура, количество вещества, сила света.

Каждой основной физической величине системы величин присваивается символ в виде строчной буквы латинского или греческого алфавита: длина – L, масса – М, время – Т, сила электрического тока – I, температура – O, количество вещества – N, сила света – J. Эти символы входят в название системы физических величин. Так, система физических величин механики, основными величинами которой являются длина, масса и время, называется "система LMT".

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

1.3 Физические величины и их измерения

Физическая величина – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Можно сказать также, что физическая величина - это величина, которая может быть использована в уравнениях физики, причем, под физикой здесь понимается в целом наука и технологии.

Слово «величина » часто применяется в двух смыслах: как вообще свойство, к которому применимо понятие больше или меньше, и как количество этого свойства. В последнем случае приходилось бы говорить о «величине величины», поэтому в дальнейшем речь будет идти о величине именно как свойстве физического объекта, во втором же смысле  как о значении физи-ческой величины.

В последнее время все большее распространение получает подразделение величин на физические и нефизические , хотя следует отметить, что пока нет строгого критерия для такого деления величин. При этом под физическими понимают величины, которые характеризуют свойства физического мира и применяются в физических науках и технике. Для них существуют единицы измерения. Физические величины в зависимости от правил их измерения подразделяются на три группы:

Величины, характеризующие свойства объектов (длина, масса);

    величины, характеризующие состояние системы (давление,

    температура);

Величины, характеризующие процессы (скорость, мощность).

К нефизическим относят величины, для которых нет единиц измерения. Они могут характеризовать как свойства материального мира, так и понятия, используемые в общественных науках, экономике, медицине. В соответствии с таким разделением величин принято выделять измерения физических величин и нефизические измерения . Другим выражением такого подхода являются два разных понимания понятия измерения:

    измерение в узком смысле как экспериментальное сравнение

одной измеряемой величины с другой известной величиной того

же качества, принятой в качестве единицы;

    измерение в широком смысле как нахождение соответствий

между числами и объектами, их состояниями или процессами по

известным правилам.

Второе определение появилось в связи с широким распространением в последнее время измерений нефизических величин, которые фигурируют в медико-биологических исследованиях, в частности, в психологии, в экономике, в социологии и других общественных науках. В этом случае правильнее было бы говорить не об измерении, а об оценивании величин , понимая оценивание как установление качества, степени, уровня чего-либо в соответствии с установленными правилами. Другими словами, это операция по приписыванию путем вычисления, нахождения или определения числа величине, характеризующей качество какого-либо объекта, по установленным правилам. Например, определение силы ветра или землетрясения, выставление оценки фигуристам или оценок знаний учащихся по пятибалльной шкале.

Понятие оценивание величин не следует путать с понятием оценки величин, связанным с тем, что в результате измерений мы фактически получаем не истинное значение измеряемой величины, а лишь его оценку, в той или иной степени близкую к этому значению.

Рассмотренное выше понятие «измерение », предполагающее наличие единицы измерения (меры), соответствует понятию измерения в узком смысле и является более традиционным и классическим. В этом смысле оно и будет пониматься ниже - как измерение физических величин.

Ниже приведены основные понятия , относящиеся к физической величине (здесь и далее все основные понятия по метрологии и их определения приводятся по упомянутой выше рекомендации по межгосударственной стандартизации РМГ 29-99):

- размер физической величины - количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу;

- значение физической величины - выражение размера физической величины в виде некоторого числа принятых для нее единиц;

- истинное значение физической величины - значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину (может быть соотнесено с понятием абсолютной истины и получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений);

    действительное значение физической величины значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него;

    единица измерения физической величины физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин;

    система физических величин совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие определяются как функции этих независимых величин;

    основная физическая величина физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

    производная физическая величина физическая величина, входящая в систему величин и определяемая через основные величины этой системы;

    система единиц физических единиц  совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.

Вверх