Влияние температуры на жизнедеятельность растений. Шпаргалка: Влияние высоких температур на растения. Растения требующие холодного помещения

Жизнь и развитие комнатных растений зависит от многих факторов и основным из них является температура. Влияние температуры на растения может быть как положительным так и крайне отрицательным. Конечно все зависит от вида растения и его предпочтений в условиях дикой природы, но некоторые виды утрачивают изначальные привычки и полностью адаптируются к условиям квартир.

Каждый тип растений нуждается в разном количестве тепла, некоторые их них могут стойко переносить отклонения от приемлемых температурных режимов, а другие страдают и тормозятся в развитии.

Важным фактором является не только количество тепла получаемого растением, но и продолжительность теплового воздействия. На разных этапах жизни растения количество необходимого тепла не редко варьируется, так на стадии активного роста большинству растений необходима теплая атмосфера, но когда растение переходит в период покоя количество получаемого тепла рекомендуется снизить.

Комфортная температура для каждого растения определяется исходя из значений максимальной и минимальной температуры при которой растение нормально развивается или комфортно себя ощущает на разных этапах жизни. Падение температуры ниже допустимых значений, как правило, приводит к затуханию всех процессов, торможению развития и ослаблению процесса фотосинтеза. Повышение напротив активизирует и ускоряет эти процессы.

В холодное время года влияние температуры на растения немного отличается. Растения будет комфортно при более низких температурах, это обусловлено тем, что большинство растений в этот период переходят в фазу покоя. В это время процесс роста замедляется или прекращается вовсе, растение как бы спит, дожидаясь более благоприятных условий. Поэтому причин поддерживать высокую температуру в этот период нет, потребность растений в тепле намного меньше чем в летний период.

  • способные выдержать резкое изменение температур
  • теплолюбивые
  • любители прохладного содержания

К первой группе относят аспидистру, аукубу, кливию, монстеру, фикусы, традесканции и даже некоторые виды пальм. К любителям теплых условий зимой относятся орхидея, колеус и др. эти растения страдают от недостатка тепла и могут погибнуть, поэтому к их содержанию необходимо подходить отвественно. К третье группе относятся жасмин, цикламен, самшит и другие. Данные растения будут хорошо себя чувствовать в прохладных помещениях при средних температурах 8-12 градусов.

Обычно представители третье группы вызывают трудности, ведь в холодное время года создать прохладные условия проблематично. Да-да, ка бы смешно это не звучало, но это именно так. Люди сами по природе своей теплолюбивы, и не многие из них захотят проживать в прохладных условиях в угоду комнатных растений, да и к тому же отопление иногда жарит так что хоть окна на распашку открывай =)

Для создания прохладных условий можно ставить такие растения на подоконники, но в этом случае нужно обязательно защитить их от жара систем отопления, например отгородив защитным экраном или немного убавив обогрев

Если влияние температуры на растения и может быть разным, то резкие скачки температуры однозначно скажутся негативно. Такое часто случается, особенно зимой. Быстрые изменения температуры могут негативно сказаться на корневой системе растения, переохладить корни и листья, в результате чего растение может заболеть. Больше всего подобным перепадам подвержены растения стоящие на подоконниках, там они находятся в положении «между молотом и наковальней». С одной стороны напирает жар от батареи, а с другой холод при проветривании и замерзших стекол.

Конечно наиболее чувствительны к перепадам тропические растения, а вот кактусы стойко переносят даже сильные скачки. По природе свой кактусы находятся в условиях, когда дневная и ночная температуры могут отличаться на десятки градусов.

При проветривании комнат растения следует обязательно защищать, особенно те которые стоят на подоконнике. Для этой цели можно использовать лист картона, если защитить растения нечем — лучше убрать их подальше от окна на время проветривания.

В статье даны общие сведения, естественно, влияние температуры на растения конкретных видов могут сильно отличаться. Ознакомиться с рекомендуемыми температурами для отдельных видов растений лучше в каталоге.

Негативное влияние холода зависит от диапазона понижения температур и продолжительности их воздействия. Уже неэкстремальные низкие температуры неблагоприятно сказываются на растениях, поскольку:

  • тормозят основные физиологические процессы (фотосинтез, транспирацию, водообмен и т.д.),
  • снижают энергетическую эффективность дыхания,
  • изменяют функциональную активность мембран,
  • приводят к преобладанию в обмене веществ гидролитических реакций.

Внешне повреждение холодом сопровождается потерей листьями тургора и изменением их окраски из-за разрушения хлорофилла. Основная причина повреждающего действия низкой положительной температуры на теплолюбивые растения - нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в гель. В результате, с одной стороны, повышается проницаемость мембран для ионов, а с другой - увеличивается энергия активации ферментов, связанных с мембраной. Скорость реакций, катализируемых мембранными ферментами, снижается после фазового перехода быстрее, чем скорость реакций, связанных с растворимыми энзимами. Все это приводит к неблагоприятным сдвигам в обмене веществ, резкому возрастанию количества эндогенных токсикантов, а при длительном действии низкой температуры - к гибели растения.

Установлено, что действие низких отрицательных температур находится в зависимости от состояния растений и, в частности, от оводненности тканей организма. Так, сухие семена могут выносить понижение температуры до -196°С (температура жидкого азота). Это показывает, что губительное влияние низкой температуры принципиально отлично от влияния высокой температуры, вызы­вающей непосредственное свертывание белков.

Основное повреждающее влия­ние на растительный организм оказывает льдообразование. При этом лед может образовываться как в самой клетке, так и вне клетки . При быстром понижении температуры образование льда происходит внутри клетки (в цитоплазме, вакуолях). При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Плазмалемма препятствует проникновению кристаллов льда внутрь клетки. Содержимое клетки находится в переохлажденном состоянии. В результате первоначального образования льда вне клеток водный потен­циал в межклеточном пространстве становится более отрицательным по срав­нению с водным потенциалом в клетке. Происходит перераспределение воды. Равновесие между содержанием воды в межклетниках и в клетке достигается благодаря:

  • либо оттоку воды из клетки,
  • либо образованию внутриклеточного льда.

Если скорость оттока воды из клетки соответствует скорости понижения температуры, то внутриклеточный лед не образуется. Однако гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клет­ки, вызывают ее обезвоживание и одновременно оказывают на цитоплазму ме­ханическое давление, повреждающее клеточные структуры. Это вызывает ряд последствий:

  • потерю тургора,
  • повышение концентрации клеточного сока,
  • рез­кое уменьшение объема клеток,
  • сдвиг значений рН в неблагоприятную сторону.

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость.

Холодостойкость растений – способность теплолюбивых растений переносить низкие положительные температуры. Защитное значение при действии низких положительных температур на теплолюбивые растения имеет ряд приспособлений. Прежде всего, это поддержание стабильности мембран и предотвращение утечки ионов . Устойчивые растения отличаются большей долей ненасыщенных жирных кислот в составе фосфолипидов мембран. Это позволяет поддерживать подвижность мембран и предохраняет от разрушений. В этой связи большую роль выполняют ферменты ацетилтрансферазы и десатуразы. Последние приводят к образованию двойных связей в насыщенных жирных кислотах.

Приспособительные реакции к низким положительным температурам проявляются в способности поддерживать метаболизм при ее снижении. Это достигается более широким температурным диапазоном работы ферментов, синтезом протекторных соединений. У устойчивых растений возрастает роль пентозофосфатного пути дыхания, эффективность работы антиоксидантной системы, синтезируются стрессовые белки. Показано, что при действии низких положительных температур индуцируется синтез низкомолекулярных белков.

Для повышения холодостойкости используется предпосевное замачивание семян. Эффективным является и использование микроэлементов (Zn, Mn, Сu, В, Мо). Так, замачивание семян в растворах борной кислоты, сульфата цинка или сульфата меди повышает холодоустойчивость растений.

Морозоустойчивость растений – способность растений переносить отрицательные температуры.

Адаптации растений к отрицательным температурам . Существуют два типа приспособлений к действию отрицательных температур:

  • уход от повреждающего действия фактора (пассивная адаптация),
  • повышение выживаемости (активная адаптация).

Уход от повреждающего действия низких температур достигается, прежде всего, за счет короткого онтогенеза – это уход во времени . У однолетних растений жизненный цикл заканчивается до наступления отрицательных температур. Эти растения до наступления осенних холодов успевают дать семена.

Большая часть многолетников теряет свои надземные органы и перезимовывает в виде луковиц, клубней или корневищ, хорошо защищенных от мороза слоем почвы и снега – это уход в пространстве от повреждающего действия низких температур.

Закаливание – это обратимое физиологическое приспособление к неблагоприятным воздействиям, происходящее под влиянием определенных внешних условий, относится к активной адаптации. Физиологическая природа процесса закаливания к отрицательным температурам была раскрыта благодаря работам И.И. Туманова и его школы.

В результате процесса закаливания морозоустойчивость организма резко повышается. Способностью к закаливанию обладают не все растительные организмы, она зависит от вида растения, его происхождения. Растения южного происхождения к закаливанию не способны. У растений северных широт процесс закаливания приурочен лишь к определенным этапам развития.

Закаливание растений проходит в две фазы:

Первая фаза закаливания проходит на свету при несколько пониженных плюсовых температурах (днем около 10°С, ночью около 2°С) и умеренной влажности. В эту фазу продолжается дальнейшее замедление, и даже полная остановка ростовых процессов.

Особенное значение в развитии устойчивости растений к морозу в эту фазу имеет накопление веществ-криопротекторов, выполняющих защитную функцию: сахарозы, моносахаридов, растворимых белков и др. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление сахаров стабилизирует клеточные структуры, в частности хлоропласты, благодаря чему они продолжают функционировать.

Вторая фаза закаливания протекает при дальнейшем понижении температуры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта. Продолжается новообразование специфических, устойчивых к обезвоживанию белков. Важное значение имеет изменение межмолекулярных связей белков цитоплазмы. При обезвоживании, происходящем под влиянием льдообразования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения и деформации белковых молекул. В связи с этим большое значение имеет наличие сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды и препятствуют сближению молекул белка. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдообразования.

По отношению к температуре различают следующие типы растений:

  • 1. Термофилы , мегатермные, теплолюбивые растения, температурный оптимум которых лежит в области повышенных температур.
  • 2. Криофилы , микротермные, холодолюбивые растения, температурный оптимум которых лежит в области низких температур.
  • 3. Мезотермные растения - промежуточная группа.

Выносливость растений к экстремальным температурам характеризует их жаростойкость и морозостойкость. На действие температуры как фактора, наземные растения выработали ряд адаптаций.

Так, от перегрева растение защищает:

  • 1. Транспирация (при испарении 1 г воды при 20° требуется 500 ккал)
  • 2. Блестящая поверхность, густое опушение, вертикальное расположение узких листовых пластинок (типчак, ковыль), общая редукция листовой поверхности - то есть все те приспособления, которые служат для ослабления влияния солнечной радиации.
  • 3. Пробка на коре, воздушные полости на корневой шейке - приспособления, свойственные пустынным растениям.
  • 4. Своеобразной адаптацией является занятие растениями определенных экологических ниш, защищенных от перегрева.
  • 5. Переживание наиболее жарких месяцев в состоянии анабиоза или в виде семян и подземных органов.

Специальных адаптации к действию холода у растений нет, но от всего комплекса неблагоприятных факторов, с ним связанных (сильные ветры, возможность иссушения) растение защищают такие морфологические особенности как опушение почечных чешуй, засмоление почек, утолщенный пробковый слой, толстая кутикула. Своеобразное приспособление к холоду наблюдается в высокогорьях Африки у розеточных деревьев лобелии во время ночного холода розетки листьев закрываются.

Защите от холода способствуют также:

  • 1. Малые размеры, карликовость, или нанизм . Например, у карликовой березы и ивы - Веtula nana, Salix роlaris.
  • 2. Стелющиеся формы - стланцы .
  • 3. Переживание наиболее жарких месяцев в состоянии анабиоза или в виде семян, или подземных органов.
  • 4. Особая жизненная форма растений-подушек (у вереска) способна поддерживать температуру в гуще ветвей на 13°С выше окружающей.
  • 5. Развитие контрактильных - сократительных корней. Осенью такие корни высыхают, сокращаются и вдавливают зимующие почки вглубь почвы, что препятствует выталкивающей силе вечной мерзлоты).

Для растений умеренных областей более характерны физиологические способы защиты от холода.

  • 1. Снижение точки замерзания клеточного сока (больше растворимых сахаров, увеличение доли коллоидно-связанной воды). В целом растения в этом плане хуже приспособлены чем насекомые.
  • 2. Снижение температурных оптимумов физиологических процессов. У арктических лишайников, например, фотосинтез оптимален при 5° и возможен при -10°
  • 3. Подснежный рост в предвесенний период у пролесков, тюльпанов и других эфемероидов.
  • 4. Анабиоз - крайняя мера защиты растений - состояние покоя, во время которого растение способно вынести до -200°С. В состоянии зимнего покоя различают фазу глубокого или органического покоя, когда срезанные ветки не распускаются в тепле и фазу вынужденного покоя в конце зимы. Сигналом к наступлению покоя служит сокращение дня.

О пределе холода, который способны вынести растения в естественных условиях, дают представление величины предельно низких температур на земном шаре. Там, где зарегистрирована самая низкая температура (-90°С, станция «Восток» в Антарктиде), растительность отсутствует; а в районах, где живут растения, отмечена температура -68°С (Оймякон в Якутии, область таежных лесов из лиственницы - Larix dahurica).

Растительный покров обширных территорий земного шара (умеренные и арктические области, высокогорья) ежегодно в течение нескольких месяцев подвергается действию низких температур. Кроме того, в отдельных районах и в более теплые сезоны растения могут испытывать кратковременные воздействия пониженных температур (ночные и утренние заморозки). Наконец, есть местообитания, где вся жизнь растений проходит на весьма пониженном температурном фоне (арктические снежные и морские водоросли, приснежная-нивальная растительность в высокогорьях). Неудивительно, что естественный отбор выработал у растений ряд защитных приспособлений к неблагоприятному действию холода.

Кроме непосредственного влияния низкой температуры на растения под действием холода возникают и другие неблагоприятные явления. Например, уплотнение и растрескивание замерзшей почвы приводит к разрыву и механическому повреждению корней, образование ледяной корки на поверхности почвы ухудшает аэрацию и дыхание корней. Под толстым и долго лежащим снежным покровом при температуре около 0°С наблюдается зимнее «выпревание», истощение и гибель растений в связи с расходом резервных веществ на дыхание, грибными заболеваниями («снежная плесень») и т. д., а в случае избыточно увлажненной почвы для растений опасно также зимнее «вымокание». В тундре и северной тайге распространено явление морозного «выпирания» растений, которое вызывается неравномерным замерзанием и расширением почвенной влаги. При этом возникают силы, выталкивающие растение из почвы, в результате чего происходит «выпучивание» целых дернин, оголение и обрывы корней и т. д. вплоть до повала небольших деревьев. Поэтому кроме собственно холодостойкости (или морозостойкости) - способности переносить прямое действие низких температур, различают еще зимостойкость растений - способность к перенесению всех перечисленных выше неблагоприятных зимних условий.

Особо следует остановиться на том, как влияет на растения низкая температура почвы. Холодные почвы в сочетании с умеренно-теплым режимом воздушной среды растений (а иногда и со значительным нагреванием надземных частей растений) - явление нередкое. Таковы условия жизни растений на болотах и заболоченных лугах с тяжелыми почвами, в некоторых тундровых и. высокогорных местообитаниях и в обширных областях вечной мерзлоты (около 20% всей суши), где в период вегетации оттаивает лишь неглубокий, так называемый «деятельный» слой почвы. В условиях пониженных температур почвы после снеготаяния (0-10°С) проходит значительная часть вегетации ранневесенних лесных растений - «подснежников». Наконец, кратковременные периоды резкого несоответствия холодных почв и прогретого воздуха испытывают ранней весной многие растения умеренного климата (в том числе и древесные породы).

Еще в прошлом веке немецкий физиолог Ю. Сакс показал, что при охлаждении почвы до околонулевых температур (обкладывание горшка льдом) может наступить завядание даже обильно политых растений, поскольку при низких температурах корни не способны интенсивно всасывать воду. На этом основании в экологии распространилось мнение о «физиологической сухости» местообитаний с холодными почвами (т. е. недоступности влаги растениям при ее физическом обилии). При этом упускали из виду, что Сакс и другие физиологи свои опыты производили с достаточно теплолюбивыми растениями (огурцы, тыква, салат и др.) и что в природных холодных местообитаниях растения, для которых низкие температуры почв служат естественным фоном, возможно, реагируют на них совсем иначе. Действительно, современные исследования показали, что у большинства растений тундр, болот, у ранневесенних лесных эфемероидов отсутствуют те явления угнетения (затруднение всасывания воды, расстройства водного режима и т. д.), которые могли бы быть вызваны «физиологической сухостью» холодных почв. Это же показано и для многих растений в областях вечной мерзлоты. Вместе с тем нельзя полностью отрицать угнетающее влияние низких температур на всасывание влаги и другие стороны жизнедеятельности корней (дыхание, рост и др.), а также на активность почвенной микрофлоры. Оно без сомнения имеет значение в комплексе трудных условий для жизни растений в холодных местообитаниях. «Физиологическая сухость», «физиологическая засуха» из-за низкой температуры почв возможны в жизни растений в наиболее трудных условиях, например при выращивании на холодных почвах теплолюбивых растений или ранней весной для древесных пород, когда еще необлиственные ветви сильно нагреваются (до 30-35°С) и увеличивают потерю влаги, а интенсивная работа корневых систем еще не началась.

Каких-либо специальных морфологических приспособлений, защищающих от холода, у растений нет, скорее можно говорить о защите от всего комплекса неблагоприятных условий в холодных местообитаниях, включающего сильные ветры, возможность иссушения и т. д. У растений холодных областей (или у переносящих холодные зимы) часто встречаются такие защитные морфологические особенности, как опушение почечных чешуи, зимнее засмоление почек (у хвойных), утолщенный пробковый слой, толстая кутикула, опушение листьев и т. д. Однако их защитное действие имело бы смысл лишь для сохранения собственного тепла гомеотермных организмов, для растений же эти черты, хотя и способствуют терморегуляции (уменьшение лучеиспускания), в основном важны как защита от иссушения. В растительном мире есть интересные примеры адаптации, направленных на сохранение (хотя и кратковременное) тепла в отдельных частях растения. В высокогорьях Восточной Африки и Южной Америки у гигантских «розеточных» деревьев из родов Senecio, Lobelia, Espeletia и других от частых ночных морозов существует такая защита: ночью листья розетки закрываются, защищая наиболее уязвимые части - растущие верхушки. У некоторых видов листья опушены снаружи, у других в розетке скапливается выделяемая растением вода; ночью замерзает лишь поверхностный слой, а конусы нарастания оказываются защищенными от мороза в своеобразной «ванне».

Среди морфологических адаптации растений к жизни в холодных местообитаниях важное значение имеют небольшие размеры и особые формы роста. Не только многие травянистые многолетники, но также кустарники и кустарнички полярных и высокогорных областей имеют высоту не более нескольких сантиметров, сильно сближенные междоузлия, очень мелкие листья (явление нанизма или карликовости). Кроме хорошо известного примера - карликовой березки (Betula папа), можно назвать карликовые ивы (Sahx polaris, S. arctica, S. herbacea) и многие другие. Обычно высота этих растений соответствует глубине снежного покрова, под которым зимуют растения, так как все части, выступающие над снегом, гибнут от замерзания и высыхания. Очевидно, в образовании карликовых форм в холодных местообитаниях немалую роль играют и бедность почвенного питания в результате подавления активности микробов, и торможение фотосинтеза низкими температурами. Но независимо от способа образования карликовые формы дают известное преимущество растениям в приспособлении к низким температурам: они располагаются в припочвенной экологической микронише, наиболее прогреваемой летом, а зимой хорошо защищены снежным покровом и получают дополнительный (хотя и небольшой) приток тепла из глубины почвы.

Другая адаптивная особенность формы роста - переход сравнительно крупных растений (кустарников и даже деревьев) от ортотропного (вертикального) к плагиотропному (горизонтальному) росту и образование стелющихся форм- стланцев, стлаников, стланичков. Такие формы способны образовывать кедровый стланик (Pinus pumila), можжевельник (Juniperus sibirica, J. communis, J. turkestanica), рябина и др. Ветви стланцев распластаны по земле и приподнимаются не выше обычной глубины снежного покрова. Иногда это результат отмирания ствола и разрастания нижних ветвей (например, у ели), иногда это рост дерева как бы «лежа на боку» с плагиотропным, укоренившимся во многих местах стволом и приподнимающимися ветвями (кедровый стланик). Интересная особенность некоторых древесных и кустарниковых стлаников - постоянное отмирание старой части ствола и нарастание «верхушки», в результате чего трудно определить возраст особи.

Стланики распространены в высокогорных и полярных областях, в условиях, которых уже не выдерживают древесные породы (например, на верхней границе леса). Своеобразные «стланиковые» формы в крайних условиях встречаются и у кустарничков, и даже у видов лишайников, обычно имеющих прямостоячий кустистый рост: на скалах Антарктиды они образуют стелющиеся слоевища,

В зависимости от условий возможны видоизменения роста одного и того же вида. Но есть виды, целиком перешедшие к форме стланика, например горный сосновый стланик, произрастающий в Альпах и Карпатах - Pinus mughus, выделенный в качестве самостоятельного вида из сосны горной - Pinus montana.

К числу форм роста, способствующих выживанию растений в холодных местообитаниях, принадлежит еще одна чрезвычайно своеобразная - подушковидная. Форма растения-подушки образуется в результате усиленного ветвления и крайне замедленного роста скелетных осей и побегов. Мелкие ксерофильные листья и цветки расположены по периферии подушки. Между отдельными ветвями скапливаются мелкозем, пыль, мелкие камни. В результате некоторые виды растений-подушек приобретают большую компактность и необычайную плотность: по таким растениям можно ходить, как по твердой почве. Таковы Silene acaulis. Gypsophila aretioides, Androsace helvetica, Acantholimon diapensioides. Издали их трудно отличить от валунов. Менее плотны колючие подушки из родов Eurotia, Saxifraga.

Растения-подушки бывают разных размеров (до 1 м в поперечнике) и разнообразных очертаний: полушаровидные, плоские, вогнутые, иногда довольно причудливых форм (в Австралии и Новой Зеландии их называют «растительными овцами»).

Благодаря компактной структуре растения-подушки успешно противостоят холодным ветрам. Поверхность их нагревается почти так же, как и поверхность почвы, а колебания температуры внутри менее выражены, чем в окружающей среде. Отмечены случаи значительного повышения температуры внутри подушки; например, у наиболее распространенного вида высокогорий Центрального Тянь-Шаня Dryadanthe tetrandra при температуре воздуха 10°С внутри подушки температура доходила до 23°С благодаря аккумуляции тепла в этом своеобразном «парнике». В связи с медленным ростом растения-подушки по долговечности вполне сравнимы с деревьями. Так, на Памире подушка Acantholimon hedini диаметром 3 см имела возраст 10-12 лет, при 10 см - 30-35 лет, а возраст крупных подушек достигал не одной сотни лет.

В пределах общей формы растений-подушек существует экологическое разнообразие: например в горах, окружающих Средиземное море, распространены менее компактные по строению ксерофильные «колючие подушки», которые не встречаются высоко в горах, так как малоустойчивы к холоду, но зато очень устойчивы к засухе. Рыхлое строение подушки здесь оказывается более выгодным для растения, чем компактное, так как в условиях летней засухи и сильной инсоляции снижает опасность перегрева ее поверхности. Температура поверхности средиземноморских подушек обычно ниже температуры воздуха благодаря сильной транспирации, а внутри подушки создается особый микроклимат; например, влажность воздуха держится на уровне 70-80% при влажности наружного воздуха 30%. Таким образом, здесь форма подушки - это приспособление к совсем иному комплексу факторов, отсюда и ее иная «конструкция».

Среди других особенностей роста, помогающих растениям преодолевать действие холода, следует еще упомянуть различные приспособления, направленные на углубление зимующих частей растений в почву. Это развитие контрактильных (сократительных) корней - толстых и мясистых, с сильноразвитой механической тканью. Осенью они высыхают и сильно сокращаются в длину (что хорошо заметно по поперечной морщинистости), при этом возникают силы, втягивающие в почву зимующие почки возобновления, луковицы, корни, корневища.

Контрактильные корни встречаются у многих растений высокогорий, тундр и других холодных местообитаний. Они позволяют, в частности, успешно противостоять морозному выпиранию растений из почвы. В последнем случае они не только втягивают почку возобновления, но и ориентируют ее перпендикулярно поверхности, если растение повалено. Глубина втягивания контрактильными корнями варьирует от сантиметра до нескольких десятков сантиметров в зависимости от особенностей растения и механического состава почвы.

Адаптивное изменение формы как защита от холода - явление, ограниченное в основном холодными районами. Между тем действие холода испытывают и растения более умеренных областей. Гораздо более универсальны физиологические способы защиты. Они направлены прежде всего на снижение точки замерзания клеточного сока, предохранение воды от вымерзания и т. д. Отсюда такие особенности холодостойких растений, как повышение концентрации клеточного сока, главным образом за счет растворимых углеводов. Известно, что при осеннем повышении холодостойкости («закаливании») крахмал превращается в растворимые сахара. Другая черта холодостойких растений - повышение доли коллоидно-связанной воды в общем водном запасе.

При медленном снижении температуры растения могут вынести охлаждение ниже точки замерзания клеточного сока в состоянии переохлаждения (без образования льда). Как показывают эксперименты, уровень точек переохлаждения и замерзания тесно связан с температурными условиями обитания. Однако у растений состояние переохлаждения возможно лишь при небольшом холоде (несколько градусов ниже нуля). Гораздо более действенным этот путь адаптации оказывается у других пойкилотермных организмов- насекомых, у которых роль антифризов играют глицерин, трегалоза и другие защитные вещества (открыто зимующие насекомые могут вынести переохлаждение клеточных соков без замерзания до - 30°С).

Многие растения способны сохранять жизнеспособность и в промерзшем состоянии. Есть виды, замерзающие осенью в фазе цветения и продолжающие цвести после оттаивания весной (мокрица - Stellaria media, маргаритка- Bellis perennis, арктический хрен - Cochlearia fenestrata и др.). Ранневесенние лесные эфемероиды («подснежники») в течение короткой вегетации неоднократно переносят весенние ночные заморозки: цветки и листья промерзают до стекловидно-хрупкого состояния и покрываются инеем, но уже через 2-3 ч после восхода солнца оттаивают и возвращаются в обычное состояние. Хорошо известна способность мхов и лишайников переносить длительное промерзание зимой в состоянии анабиоза. В одном из опытов лишайник Cladonia замораживали при -15°С на 110 недель (более двух лет!).

После оттаивания лишайник оказался живым и вполне жизнеспособным, у него возобновились фотосинтез и рост. Очевидно, у лишайников в крайне холодных условиях существования периоды такого анабиоза очень длительны, а рост и активная жизнедеятельность осуществляются лишь в короткие благоприятные периоды (причем не каждый год). Такое частое прерывание активной жизни на долгие сроки, по-видимому, объясняет колоссальный возраст многих лишайников, определенный радиоуглеродным методом (до 1300 лет у Rhizocaгрon geographicum и Альпах, до 4500 лет у лишайников в Западной Гренландии).

Анабиоз - «крайняя мера» в борьбе растения с холодом, приводящая к приостановке жизненных процессов и резкому снижению продуктивности. Гораздо большее значение в адаптации растений к холоду имеет возможность сохранения нормальной жизнедеятельности путем снижения температурных оптимумов физиологических процессов и нижних температурных границ, при которых эти процессы возможны. Как видно на примере оптимальных температур для фотосинтеза и его нижних температурных порогов, эти явления хорошо выражены у растений холодных местообитаний. Так, у альпийских и антарктических лишайников для фотосинтеза оптимальна температура около 5°С; заметный фотосинтез удается обнаружить у них даже при -10°С. При сравнительно низких температурах лежит оптимум фотосинтеза у арктических растений, высокогорных видов, ранневесенних эфемероидов. Зимой при отрицательных температурах способны к фотосинтезу многие хвойные древесные породы. У одного и того же вида температурные оптимумы фотосинтеза связаны с изменением условий: так, у альпийских и арктических популяций травянистых многолетников - Оху ria digyna, Thalictrum alpinum и других видов они более низкие, чем у равнинных. Показательно в этом отношении и сезонное смещение оптимума по мере повышения температуры от весны к лету и снижения от лета к осени и зиме.

При низких температурах для растений чрезвычайно важно сохранить достаточный уровень дыхания - энергетической основы роста и репарации возможных повреждений холодом. На примере ряда растений памирских высокогорий показано, что в этих условиях довольно интенсивное дыхание сохраняется после действия температуры от -6 до -10°С.

Еще один пример устойчивости физиологических процессов к холоду- зимний и предвесенний подснежный рост у растений тундр, высокогорий и других холодных местообитаний с коротким вегетационным периодом, обусловленным заблаговременной подготовкой. Это явление чрезвычайно ярко выражено у эфемероидов лесостепных дубовых лесов (пролески - Scilla sibirica, хохлатки - Corydalis halleri, гусиного лука - Gagea lutea, чистяка - Ficariaverna и др.), у которых уже в начале зимы начинается рост побегов со сформированными внутри бутонами (вначале в промерзшей почве, а затем над почвой, внутри снежного покрова. Не прекращается у них зимой и формирование генеративных органов. По мере приближения сроков снеготаяния скорость подснежного роста заметно возрастает. В пору раннего «предвесенья», когда лес кажется еще совсем безжизненным, под снеговым покровом над почвой уже возвышаются тысячи ростков пролески и гусиного лука, достигающих к этому времени 2-7 см высоты и готовых начать цветение, как только сойдет снег. Образование хлорофилла у ранневесенних эфемероидов также начинается при низких температурах порядка 0°С, еще под снегом.

Экологические различия холодостойкости растений

В экологии и экологической физиологии в качестве одного из показателей устойчивости к холоду используется способность растения переносить низкую температуру в экспериментальных условиях в течение определенного срока. Накоплено много данных, позволяющих сравнивать растения различных по температурным условиям местообитаний. Однако эти данные не всегда строго сравнимы, поскольку температура, которую способно вынести растение, в числе прочих причин зависит и от продолжительности ее действия (так, небольшой холод порядка -3-5°С умеренно теплолюбивое растение способно вынести в течение нескольких часов, но та же температура может оказаться губительной, если будет действовать несколько суток), В большинстве экспериментальных работ принято охлаждение растений в течение суток или близкого срока.

Как видно из нижеследующих данных и, холодостойкость растений весьма различна и зависит от условий, в которых они обитают.

Один из крайних примеров холодостойкости - так называемый «криопланктон». Это снежные водоросли, живущие в поверхностных слоях снега и льда и при массовом размножении вызывающие его окрашивание («красный снег», «зеленый снег» и т. д.). В активных фазах они развиваются при 0°С (летом на оттаявшей поверхности снега и льда). Пределы устойчивости к низким температурам от -36°С у Chlamydomonas nivalis до -40, -60°С у Pediastrutn boryanum, Hormidium flaccidum. Столь же велика холодостойкость фитопланктона полярных морей, нередко зимующего в корке льда.

Большой холодостойкостью отличаются альпийские карликовые кустарнички - Rhododendron ferrugineum, Erica carnea и др. (-28, -36°С), хвойные древесные породы: так, для сосны Pinus strobus в Тирольских Альпах в экспериментах отмечена рекордная температура: -78°С.

Совсем небольшая холодостойкость у растений тропических и субтропических областей, где они не испытывают действия низких температур (за исключением высокогорий). Так, для водорослей тропических морей (особенно мелководных районов) нижняя температурная граница лежит в пределах 5-14°С (вспомним, что для водорослей арктических морей верхняя граница составляет 16°С). Саженцы тропических древесных пород гибнут при 3-5°С. У многих тропических термофильных растений, например декоративных оранжерейных видов из родов Gloxinia, Coleus, Achimenes и др., понижение температуры до нескольких градусов выше нуля вызывает явления «простуды»: при отсутствии видимых повреждений через некоторое время останавливается рост, опадают листья, растения завядают, а затем и гибнут. Известно это явление и для теплолюбивых культурных растений (огурцов, томатов, фасоли).

Очень невелика устойчивость к холоду у термофильных плесневых грибов из родов Mucor, Thermoascus, Anixia и др. Они гибнут за три дня при температуре 5-6°С и даже температуру 15-17°С не могут выносить дольше 15-20 дней.

В зависимости от степени и специфического характера холодостойкости можно выделить следующие группы растений.

Нехолодостойкие растения

К этой группе относятся все те растения, которые серьезно повреждаются уже при температурах выше точки замерзания: водоросли теплых морей, некоторые грибы и многие листостебельные растения тропических дождевых лесов.

Неморозостойкие растения

Эти растения хотя и переносят низкие температуры, но вымерзают, как только в тканях начинает образовываться лед. Неморозостойкие растения защищены от повреждения только средствами, замедляющими замерзание. В более холодное время года у них повышается концентрация осмотически активных веществ в клеточном соке и в протоплазме, а также переохлаждаемость, что предотвращает или замедляет образование льда при температурах примерно до -7°С, а при постоянном переохлаждении и до более низких температур. В период вегетации все листостебельные растения неморозостойки. В течение всего года чувствительны к образованию льда глубоководные водоросли, холодных морей и некоторые пресноводные водоросли, тропические и субтропические древесные растения и различные виды из умеренно-теплых районов.

Льдоустойчивые» растения

В холодное время года эти растения переносят внеклеточное замерзание воды и связанное с ним обезвоживание. Устойчивыми к образованию льда становятся некоторые пресноводные водоросли и водоросли приливной зоны, наземные водоросли, мхи всех климатических зон (даже тропической) и многолетние наземные растения областей с холодной зимой. Некоторые водоросли, многие лишайники и различные древесные растения способны чрезвычайно сильно закаливаться; тогда они остаются без повреждений и после продолжительных суровых морозов, и их можно охлаждать даже до температуры жидкого азота.



Температура почвы или искусственной питательной среды имеет большое значение при выращивании растений. Как высокая, так и низкая температуры являються неблагоприятными для жизнедеятельности корня. При низкой температуре дыхание корней ослабляется, вследствие чего поглощение воды и питательных солей уменьшается. Это приводит к подвяданию и остановке роста растения.

Особенно чувствительны к понижению температуры огурцы – снижение температуры до 5°C губит рассаду огурцов. Листья взрослых растений при низкой температуре питательного раствора в солнечную погоду подвядают и получают ожоги. Для этой культуры снижать температуру питательного раствора ниже 12°C не следует. Обычно в зимнее время при выращивании растений в теплицах питательный раствор, сохраняемый в баках, имеет низкую температуру, и его следует подогревать хотя бы до температуры окружающего воздуха. Наиболее благоприятной температурой раствора, применяемого для выращивания огурцов, следует считать 25-30°C, для томатов , лука на перо и других растений – 22-25°C.

Если в зимнее время необходимо подогревать субстрат, на котором идет выращивание, то летом, наоборот, растения могут страдать из-за его высокой температуры. Уже при 38-40°C поглощение воды и питательных веществ приостанавливается, растения подвядают и могут погибнуть. Допускать нагревание растворов и субстрата до такой температуры нельзя. Особенно страдают от высокой температуры корни молодых проростков. Для многих культур температура 28-30° является уже губительной.

При опасности перегрева полезно смачивать поверхность грунта водой, при испарении которой температура понижается. В летнее время в практике тепличного хозяйства широко применяется опрыскивание стекол известковым раствором, который рассеивает прямые лучи солнца и спасает растения от перегрева.

Источники

  • Выращивание растений без почвы / В.А.Чесноков, Е.Н.Базырина, Т.М.Бушуева и Н.Л.Ильинская - Ленинград: Издательство Ленинградского университета, 1960. - 170 с.
Вверх