Определение электрической диссоциации. Электролитическая диссоциация. Различают сильные и слабые электролиты

При диссоциации кислот роль катионов играют ионы водорода (H +), других катионов при диссоциации кислот не образуется:

HF ↔ H + + F - HNO 3 ↔ H + + NO 3 -

Именно ионы водорода придают кислотам их характерные свойства: кислый вкус, окрашивание индикатора в красный цвет и проч.

Отрицательные ионы (анионы), отщепляемые от молекулы кислоты, составляеют кислотный остаток .

Одной из характеристик диссоциации кислот является их оснОвность - число ионов водорода, содержащихся в молекуле кислоты, которые могут образоываваться при диссоциации:

  • одноосновные кислоты: HCl, HF, HNO 3 ;
  • двухосновные кислоты: H 2 SO 4 , H 2 CO 3 ;
  • трехосновные кислоты: H 3 PO 4 .

Процесс отщепления катионов водорода в многоосновных кислотах происходит ступенчато: сначала отщепляется один ион водорода, затем другой (третий).

Ступенчатая диссоциация двухосновной кислоты:

H 2 SO 4 ↔ H + + HSO 4 - HSO 4 - ↔ H + + HSO 4 2-

Ступенчатая диссоциация трехосновной кислоты:

H 3 PO 4 ↔ H + + H 2 PO 4 - H 2 PO 4 - ↔ H + + HPO 4 2- HPO 4 2- ↔ H + + PO 4 3-

При диссоциации многоосновных кислот самая высокая степень диссоциации приходится на первую ступень. Например, при диссоциации фосфорной кислоты степень диссоциации первой ступени равняется 27%; второй - 0,15%; третьей - 0,005%.

Диссоциация оснований

При диссоциации оснований роль анионов играют гидроксид-ионы (ОH -), других анионов при диссоциации оснований не образуется:

NaOH ↔ Na + + OH -

Кислотность основания определяется кол-вом гидроксид-ионов, образующихся при диссоциации одной молекулы основания:

  • однокислотные основания - KOH, NaOH;
  • двухкислотные основания - Ca(OH) 2 ;
  • трехкислотные основания - Al(OH) 3 .

Многокислотные основания диссоциируют, по аналогии с кислотами, также ступенчато - на каждом этапе отщепляется по одному гидроксид-иону:

Некоторые вещества, в зависимости от условий, могут выступать, как в роли кислот (диссоциировать с отщеплением катионов водорода), так и в роли оснований (диссоциировать с отщеплением гидроксид-ионов). Такие вещества называются амфотерными (см. Кислотно-основные реакции).

Диссоциация Zn(OH) 2 , как основания:

Zn(OH) 2 ↔ ZnOH + + OH - ZnOH + ↔ Zn 2+ + OH -

Диссоциация Zn(OH) 2 , как кислоты:

Zn(OH) 2 + 2H 2 O ↔ 2H + + 2-

Диссоциация солей

Соли диссоциируют в воде на анионы кислотных остатков и катионы металлов (или других соединений).

Классификация диссоциации солей:

  • Нормальные (средние) соли получаются полным одновременным замещением всех атомов водорода в кислоте на атомы металла - это сильные электролиты, полностью диссоциируют в воде с образованием катоинов металла и однокислотного остатка: NaNO 3 , Fe 2 (SO 4) 3 , K 3 PO 4 .
  • Кислые соли содержат в своем составе кроме атомов металла и кислотного остатка, еще один (несколько) атомов водорода - диссоциируют ступенчато с образованием катионов металла, анионов кислотного остатка и катиона водорода: NaHCO 3 , KH 2 PO 4 , NaH 2 PO 4 .
  • Основные соли содержат в своем составе кроме атомов металла и кислотного остатка, еще одну (несколько) гидроксильных групп - диссоциируют с образованием катионов металла, анионов кислотного остатка и гидроксид-иона: (CuOH) 2 CO 3 , Mg(OH)Cl.
  • Двойные соли получаются одновременным замещением атомов водорода в кислоте на атомы различных металлов: KAl(SO 4) 2 .
  • Смешанные соли диссоциируют на катионы металла и анионы нескольких кислотных остатков: CaClBr.
Диссоциация нормальной соли: K 3 PO 4 ↔ 3K + + PO 4 3- Диссоциация кислой соли: NaHCO 3 ↔ Na + + HCO 3 - HCO 3 - ↔ H+ + CO 3 2- Диссоциация основной соли: Mg(OH)Cl ↔ Mg(OH) + + Cl - Mg(OH) + ↔ Mg 2+ + OH - Диссоциация двойной соли: KAl(SO 4) 2 ↔ K + + Al 3+ + 2SO 4 2- Диссоциация смешанной соли: CaClBr ↔ Ca 2+ + Cl - + Br -

Вещества, растворы (или расплавы) которых проводят электрический ток, называются э л е к т р о л и т а м и. Нередко электролитами называют и сами растворы этих веществ. Эти растворы (расплавы) электролитов являются проводниками второго рода, так как передача электричества осуществляется в них движением и о н о в - заряженных частиц. Частица, заряженная положительно называется катионом (Са +2), частица несущая отрицательный заряд - анионом (ОН ־). Ионы могут быть простые (Са +2 , Н +) и сложные (РО 4 ־ 3 , НСО 3 ־ 2).

Основоположником теории электролитической диссоциации является шведский ученый С. Аррениус. Согласно теории электролитической диссоциацией называется распад молекул на ионы при их растворении в воде, причем это происходит без воздействия электрического тока. Однако эта теория не отвечала на вопросы: какие причины обусловливают появление в растворах ионов и почему положительные ионы, сталкиваясь с отрицательными, не образуют нейтральных частиц.

Свой вклад в развитие этой теории внесли русские ученые: Д.И. Менделеев, И. А. Каблуков – сторонники химической теории растворов, обращавшие внимание на влияние растворителя в процессе диссоциации. Каблуков утверждал, что растворенное вещество взаимодействует с растворителем (процесс с о л ь в а т а ц и и ) образуя продукты переменного состава (с о л ь в а т ы ).

Сольват представляет собой ион, окруженный молекулами растворителя (сольватная оболочка), которых может быть разное количество (именно за счет этого достигается переменный состав). Если растворителем является вода, то процесс взаимодействия молекул растворенного вещества и растворителя называется г и д р а т а ц и е й, а продукт взаимодействия - г и д р а т о м.

Таким образом, причиной электролитической диссоциации является сольватация (гидратация). И именно сольватация (гидратация) ионов препятствует обратному соединению в нейтральные молекулы.

Количественно процесс диссоциации характеризуется величиной степени электролитической диссоциации ( α ), которая представляет собой отношение количества распавшегося на ионы вещества к общему количеству растворенного вещества. Отсюда следует, что для сильных электролитов α = 1 или 100 % (в растворе присутствуют ионы растворенного вещества), для слабых электролитов 0 < α < 1 (в растворе присутствуют наряду с ионами растворенного вещества и его недиссоциированные молекулы), для неэлектролитов α = 0 (ионы в растворе отсутствуют). Помимо природы растворенного вещества и растворителя величина α зависит от концентрации раствора и температуры.

Если растворителем является вода, к сильным электролитам относятся:

1) все соли;

2) следующие кислоты: HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4 ;

3) следующие основания: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 .

Процесс электролитической диссоциации является обратимым, следовательно, его можно охарактеризовать величиной константы равновесия, которая, в случае слабого электролита, называется константой диссоциации (К Д ) .

Чем больше эта величина, тем легче электролит распадается на ионы, тем больше его ионов в растворе. Например: HF ═ H + + F־

Эта величина постоянная при данной температуре и зависит от природы электролита, растворителя.

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато. Например, молекулы серной кислоты в первую очередь отщепляют один катион водорода:

H 2 SO 4 ═ Н + + HSO 4 ־ .

Отщепление второго иона по уравнению

HSO 4 ־ ═ Н + + SO 4 ־ 2

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 ־ 2 , который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ־ . Поэтому вторая ступень диссоциации происходит в гораздо меньшей степени, чем первая.

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ba(OH) 2 ═ BaOH + + OH - ;

BaOH + = Ba 2+ + OH - .

Средние (нормальные) соли всегда диссоциируют на ионы металлов и кислотных остатков:

CaCl 2 = Ca 2+ + 2Cl - ;

Na 2 SO 4 = 2Na + + SO 4 2- .

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 = Na + + HCO 3 - ;

HCO 3 - = H + + CO 3 2- .

Однако степень диссоциации по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 = FeOH 2+ + 2Cl - .

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

Электролитическая диссоциация

Методические указания к выполнению лабораторной работы

по курсу «Химия» для студентов технических

специальностей и направлений,

по курсу «Общая и неорганическая химия»

для студентов направления ХМТН

всех форм обучения

Балаково 2014

Цель работы – изучение механизма диссоциации водных растворов электролитов.

ОСНОВНЫЕПОНЯТИЯ

Электролитической диссоциацией называется процесс распада молекул веществ на ионы под действием полярных молекул растворителя. Электролиты – вещества, проводящие в растворе или расплаве электрический ток (к ним относятся многие кислоты, основания, соли).

Согласно теории электролитической теории С. Аррениуса (1887 г), при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами, к ним относятся ионы водорода и металлов. Отрицательно заряженные ионы называются анионами, к ним относятся ионы кислотных остатков и гидроксид-ионы. Суммарный заряд всех ионов равен нулю, поэтому раствор в целом нейтрален. Свойства ионов отличаются от свойств атомов, из которых они образованы. Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией). Эту теорию позднее дополнили Д.И. Менделеев и И.А. Каблуков.

Механизм электролитической диссоциации

Электролитами являются вещества, в молекулах которых атомы связаны ионной или полярной связью. По современным представлениям электролитическая диссоциация происходит в результате взаимодействия молекул электролита с полярными молекулами растворителя. Сольватация - взаимодействие ионов с молекулами растворителя. Гидратация –процесс взаимодействия ионов с молекулами воды.

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по–разному.

Легче всего диссоциируют вещества с ионной связью, которые состоят из ионов. При растворении таких соединений (например, NaCl) диполи воды ориентируются вокруг положительного и отрицательного ионов кристаллической решетки. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды

Рис.1. Схема диссоциации молекулы вещества с ионной связью

Процесс электролитической диссоциации можно выразить уравнением

NaCl + (m+n)H 2 O
Na + (H 2 O) m + Cl - (H 2 O) n

Обычно, процесс диссоциации записывают в виде уравнения, опуская растворитель (H 2 O)

NaCl
Na + + Cl -

Аналогично диссоциируют и молекулы с ковалентной полярной связью (например, HCl). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы. Диссоциация полярных молекул может быть полной или частичной.

Рис.2. Схема диссоциации молекулы вещества с ковалентной

полярной связью

Электролитическая диссоциация HCl выражается уравнением

HCl + (m+n)H 2 O
H + (H 2 O) m + Cl - (H 2 O) n

или, опуская растворитель (H 2 O),

КАn
K + + A -

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации (α). Степень диссоциации электролита показывает, какая часть растворенных молекул вещества распалась на ионы. Степенью диссоциации электролита называется отношение числа продиссоциировавших молекул (N дисс ) к общему числу растворенных молекул (N)

(1)

Степень диссоциации принято выражать или в долях единицы, или в процентах, например, для 0,1н раствора уксусной кислоты СН 3 СООН

α= 0,013 (или 1,3). Степень диссоциации зависит от природы электролита и растворителя, температуры и концентрации.

По степени диссоциации (α) все электролиты делят на три группы. Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,02 (2%) до 0,3 (30%)-средними, менее 0,02 (2%)-слабыми электролитами.

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl, HNO 3 , HBr, HI, HClO 4 , HМnO 4);

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH, NaOH, KOH, RbOH, CsOH, а также гидроксиды щелочноземельных металлов – Ba(OH) 2 , Ca(OH) 2 , Sr(OH) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

К электролитам средней силы относятся H 3 PO 4 , HF и др.

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном, в недиссоциированном состоянии (в молекулярной форме). К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S, HNO 2 , H 2 SO 3 , HCN, H 2 SiO 3 , HCNS, HСlO, HClO 2 , HBrO, Н 3 ВО 3 и др.);

2) гидроксид аммония (NH 4 OH);

3) вода Н 2 О;

4) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости);

5) большинство органических кислот (например, уксусная CH 3 COOH, муравьиная HCOOH).

Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

CH 3 COOH
Н + + CH 3 COO -

При установившемся равновесии на основании закона действующих масс

Константа диссоциации K указывает на прочность молекул в данном растворе: чем меньше K, тем слабее диссоциирует электролит и тем устойчивее его молекулы.

Константа диссоциации связана со степенью диссоциации зависимостью

, (2)

где – α –степень диссоциации;

c –молярная концентрация электролита в растворе, моль/л.

Если степень диссоциации α очень мала, то ею можно пренебречь, тогда

К=
или α= (4)

Зависимость (4) является математическим выражением закона разбавления В. Оствальда.

Поведение растворов слабых электролитов описывается законом Оствальда, а разбавленных растворов сильных электролитов – Дебая-Хюккеля (5):

К=
, (5)

где концентрация (с) заменена на активность (а) наиболее точно характеризующую поведение сильных электролитов. Коэффициенты активности зависят от природы растворителя и растворенного вещества, от концентрации раствора, а также от температуры.

Активность связана с концентрацией следующим соотношением:

(6)

где γ – коэффициент активности, который формально учитывает все виды взаимодействия частиц в данном растворе, приводящие к отклонению от свойств идеальных растворов.

Диссоциация различных электролитов

Согласно теории электролитической диссоциации, кислотой является электролит, диссоциирующий с образованием ионов Н + и кислотного остатка

HNO 3
H + + NO 3 -

H 2 SO 4
2H + + SO 4 2-

Электролит, диссоциирующий с образованием гидроксид-ионов ОН - , называется основанием. Например, гидроксид натрия диссоциирует по схеме:

NaOH
Na + + OH -

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато, например,

1 ступень H 2 CO 3
H + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Диссоциация по первой ступени характеризуется константой диссоциации K 1 = 4,3·10 –7

Диссоциация по второй ступени характеризуется константой диссоциации K 2 = 5,6·10 –11

Суммарное равновесие

H 2 CO 3
2H + + CO 3 2-

Суммарная константа равновесия

Ступенчатая диссоциация многовалентных оснований

1 ступень Cu(OH) 2
+ + OH -

2 ступень +
Cu 2+ + OH -

Для ступенчатой диссоциации всегда K 1 >K 2 >K 3 >..., т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Электролиты называют амфотерными, если они диссоциируют как кислота и как основание, например, гидроксид цинка:

2H + + 2-
Zn(OH) 2 + 2H 2 O
+ 2OH -

К амфотерным электролитам относится гидроксид алюминия Al(OH) 3 , свинца Pb(OH) 2 , олова Sn(OH) 2 и другие.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2
Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2–

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Диссоциация кислых солей происходит по ступеням, например:

1 ступень KHCO 3
K + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Степень электролитической диссоциации по второй ступени очень мала, поэтому раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли (гидроксосоли) – электролиты, содержащие в катионе одну или несколько гидроксо-групп OH – .Основные соли диссоциируют с образованием основных и кислотных остатков. Например:

1 ступень FeOHCl 2
2+ + 2Cl –

2 ступень 2+
Fe 3+ + OH –

Двойные соли диссоциируют на катионы металлов и анионы

KAl(SO 4) 2
K + + Al 3+ + 2SO 4 2-

Комплексные соли диссоциируют с образованием комплексного иона

К 3
3K + + 3-

Реакции обмена в растворах электролитов

Обменные реакции между электролитами в растворе идут в направлении связывания ионов и образования малорастворимых, газообразных веществ или слабых электролитов. Ионно-молекулярные или просто ионные уравнения реакций обмена отражают состояние электролита в растворе. В этих уравнениях сильные растворимые электро­литы записывают в виде составляющих их ионов, а слабые электролиты, малорастворимые и газообразные вещества условно записывают в молекуляр­ной форме, независимо от того, являются они исходными реагентами или продуктами реакции. В ионно-молекулярном уравнении одинаковые ионы из обеих его частей исклю­чаются. При составлении ионно-молекулярных уравнений следует помнить, что сумма зарядов в левой части уравнения должна быть равна сумме зарядов в правой части уравнения. При составлении уравнений см. табл. 1,2 приложения.

Например, написать ионно-молекулярные уравнения реакции между веществма Сu(NO 3) 2 и Na 2 S.

Уравнение реакции в молекуляр­ном виде:

Сu(NO 3) 2 + Na 2 S = СuS+2NaNO 3

В результате взаимодействия электролитов образуется осадок СuS.

Ионно-молекулярное уравнение

Сu 2+ + 2NO 3 - + 2Na + + S 2- = СuS+2Na + + 2NO 3 -

Исключив одинаковые ионы из обеих частей равенства Na + и NO 3 - получим сокращенное ионно-молекулярное уравнение реакции:

Сu 2+ + S 2- = СuS

Диссоциация воды

Вода является слабым электролитом и в малой степени диссоциирует на ионы

Н 2 О
Н + + ОН -

К=

или = K · = K в

K в = 10 -14 называется ионным произведением воды и является постоянной величиной. Для чистой воды при 25 0 С концентрации ионов H + и OH - равны между собой и равны 10 -7 моль/л, поэтому · = 10 -14 .

Для нейтральных растворов =10 -7 , для кислых растворов >10 -7 , а для щелочных <10 -7 . Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным. Если концентрация ионов водорода равна 10 -4 , то концентриция гидроксид-ионов равна:

= /10 -4 = 10 -10 моль/л.

На практике кислотность или щелочность раствора выражают более удобным способом, используя водородный показатель рН или рОН.

рН =– lg ;

рОН =– lg[ОH - ]

Например, если = 10 -3 моль/л, то рН =– lg = 3; если = 10 -8 моль/л, то рН =– lg = 8. В нейтральной среде рН = 7, в кислой среде рН< 7, в щелочной среде рН >7.

Приближено реакцию раствора можно определить с помощью специальных веществ, называемых индикаторами, окраска которых изменятся в зависимости от концентрации ионов водорода.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятнопахнущими и ядовитыми веществами прово­дить обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направ­лять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

    При нагревании жидкостей, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

    При разбавлении серной кислоты нельзя приливать воду к кислоте, необходимо вливать кислоту осторожно, небольшими порциями в холод­ную воду, перемешивая раствор.

    Все склянки с реактивами необходимо закрывать соответствующими пробками.

    Оставшиеся после работы реактивы нельзя выливать или высыпать в реактивные склянки (во избежания загрязнения).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Изменение окраски индикаторов в нейтральной, кислой и щелочной среде.

Реактивы и оборудование: лакмус; метилоранж; фенолфталеин; раствор соляной кислоты HCl, 0,1н; раствор гидроксида NaOH, 0,1н; пробирки.

1. Налейте в три пробирки по 1-2 мл дистиллированной воды и прибавьте индикаторы: лакмус, метилоранж, фенолфталеин. Отметьте их цвет.

2. Налейте в три пробирки по 1-2 мл 0,1 раствора соляной кислоты и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

3. Налейте в три пробирки по 1-2 мл 0,1н раствор гидроксида натрия и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

Результаты наблюдения оформите в виде таблицы:

Задание 2. Относительная сила оснований

Реактивы и оборудование: раствор хлорида кальция СаCl 2 , 2н; раствор гидроксида NaOH, 2н; раствор гидроксида аммония NН 4 ОН, 2н; пробирки.

Налейте в две пробирки по 1-2 мл хлорида кальция, в первую пробирку прибавьте раствор гидроксида аммония, во вторую – столько же раствора гидроксида натрия.

Запишите наблюдения. Сделайте вывод о степени диссоциации указанных оснований.

Задание 3. Обменные реакции между растворами электролитов

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор сернокислой меди CuSO 4 , 0,1н; раствор карбоната натрия Na 2 CO 3 , 0,1н; раствор гидроксида NaOH, 0,1н; раствор соляной кислоты HCl, 0,1н; раствор хлорида бария BaCl 2 , 0,1н; раствор сернокислого натрия Na 2 SO 4 , 0,1н; раствор гексацианоферрата(II) калия K 4 , 0,1н; пробирки.

а) Реакции с образование нерастворимых веществ (осадка).

Налейте в первую пробирку 1-2 мл хлорида железа FeCl 3 и прибавьте такой же объем гидроксида натрия NaOH , во вторую пробирку – 1-2 мл BaCl 2 и такой же объем сернокислого натрия Na 2 SO 4 .

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

б) Реакции с образованием газов.

Налейте в пробирку 1-2 мл раствора карбоната натрия Na 2 CO 3 и добавьте такой же объем раствор соляной кислоты HCl.

Запишите наблюдения (укажите цвет и запах газа). Назовите полученнoе газообразнoе веществo.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

в) Реакции, идущие с образованием малодиссоциирующих веществ.

Налейте в первую пробирку– 1-2 мл раствора гидроксида NaOH и добавьте такой же объем раствора соляной кислоты HCl, во вторую пробирку - 1-2 мл раствора сульфата меди CuSO 4 добавить такой же объем раствора гексацианоферрата(II) калия K 4 .

Запишите наблюдения (укажите цвет образовавшегося осадка комплексной соли гексацианоферрата меди).

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Задание 4. Различие между двойной и комплексной солью

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор роданида калия KSCN, 0,1н; раствор железо-аммиачных квасцов NH 4 Fe(SO 4) 2 , 0,1н; раствор железо-синеродистого калия K 3 ; 0,1н; пробирки.

1. В пробирку налейте раствор хлорного железа FeCl 3 , затем добавьте немного роданида калия KSCN. Запишите наблюдения.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде. Ион SCN ­– является характерным реактивом на ион Fe 3+ , при их взаимодействии получается родановое железо Fe(SСN) 3 – слабодиссоциирующая соль кроваво-красного цвета.

2. В одну пробирку налейте раствор железоаммиачных квасцов NH 4 Fe(SO 4) 2 , в другую – раствор железо-синеродистого калия K 3 и в каждую из них прилейте понемногу раствор роданида калия KSCN.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Запишите наблюдения. В каком соединении обнаруживается ион трехвалентного железа? В каком соединении этот ион связан в виде комплексного иона?

Задание 5 . Смещение ионного равновесия при введении в раствор одноименного иона

NH 4 ОН – слабое основание, диссоциирующее по уравнению:

NH 4 ОН
NH 4 + +ОН –

NH 4 Cl – в растворе диссоциирует по уравнению

NH 4 Cl
NH 4 + + Cl

Реактивы и оборудование: 0,1м раствор гидроксида аммония NH 4 OH, 0,1н; фенолфталеин, кристаллический хлорид аммония NH 4 Сl; пробирки.

В пробирку с раствором NH 4 ОН прибавьте 2-3 капли фенолфталеина, который является индикатором на группу ОН - , перемешайте и разлейте раствор в две пробирки: одну пробирку оставьте для сравнения, во вторую прибавьте щепотку кристаллического NH 4 Сl – наблюдается ослабление цвета раствора.

Ослабление малиновой окраски раствора объясняется тем, что при введении в раствор хлористого аммония увеличивается концентрация иона NH 4 + , что смещает равновесие в левую сторону, а это приводит к уменьшению концентрации ионов ОН – в растворе.

Вещества-электролиты при растворении в воде распадаются на заряженные частицы — ионы. Обратное явление — моляризация, или ассоциация. Образование ионов объясняет теория электролитической диссоциации (Аррениус, 1887). На механизм распада химических соединений при расплавлении и растворении влияют особенности типов химических связей, строение и характер растворителя.

Электролиты и непроводники

В растворах и расплавах происходит разрушение кристаллических решеток и молекул — электролитическая диссоциация (ЭД). Распад веществ сопровождается образованием ионов, появлением такого свойства, как электропроводность. Не каждое соединение способно диссоциировать, а только вещества, которые изначально состоят из ионов либо сильно полярных частиц. Присутствием свободных ионов объясняется свойство электролитов проводить ток. Обладают такой способностью основания, соли, многие неорганические и некоторые органические кислоты. Непроводники состоят из малополярных или неполяризованных молекул. Они не распадаются на ионы, являясь неэлектролитами (многие органические соединения). Переносчики зарядов — положительные и отрицательные ионы (катионы и анионы).

Роль С. Аррениуса и других химиков в изучении диссоциации

Теория электролитической диссоциации обоснована в 1887 году ученым из Швеции С. Аррениусом. Но первые обширные исследования свойств растворов были проведены еще русским ученым М. Ломоносовым. Внесли вклад в изучение заряженных частиц, возникающих при растворении веществ, Т. Гротгус и М. Фарадей, Р. Ленц. Аррениус доказал, что электролитами являются многие неорганические и некоторые органические соединения. Шведский ученый объяснил электропроводность растворов распадом вещества на ионы. Теория электролитической диссоциации Аррениуса не придавала значения непосредственному участию молекул воды в этом процессе. Русские ученые Менделеев, Каблуков, Коновалов и другие считали, что происходит сольватация — взаимодействие растворителя и растворенного вещества. Когда идет речь о водных системах, то применяется название «гидратация». Это сложный физико-химический процесс, о чем свидетельствует образование гидратов, тепловые явления, изменение цвета вещества и появление осадка.

Основные положения теории электролитической диссоциации (ТЭД)

Многие ученые работали над уточнением теории С. Аррениуса. Потребовалось ее усовершенствование с учетом современных данных о строении атома, химической связи. Сформулированы основные положения ТЭД, отличающиеся от классических тезисов конца XIX века:

Происходящие явления необходимо учитывать при составлении уравнений: применить специальный знак обратимого процесса, подсчитать отрицательные и положительные заряды: они в сумме должны совпадать.

Механизм ЭД ионных веществ

Современная теория электролитической диссоциации учитывает строение веществ-электролитов и растворителей. При растворении связи между разноименно заряженными частицами в ионных кристаллах разрушаются под воздействием полярных молекул воды. Они буквально «вытягивают» ионы из общей массы в раствор. Распад сопровождается образованием вокруг ионов сольватной (в воде — гидратной) оболочки. Кроме воды, повышенной диэлектрической проницаемостью обладают кетоны, низшие спирты. При диссоциации хлорида натрия на ионы Na + и Cl - регистрируется начальная стадия, которая сопровождается ориентацией диполей воды относительно поверхностных ионов в кристалле. На заключительном этапе гидратированные ионы освобождаются и диффундируют в жидкость.

Механизм ЭД соединений с ковалентной сильнополярной связью

Молекулы растворителя влияют на элементы кристаллического строения неионных веществ. Например, воздействие диполей воды на хлороводородную кислоту приводит к изменению типа связи в молекуле с ковалентной полярной на ионную. Вещество диссоциирует, в раствор поступают гидратированные ионы водорода и хлора. Этот пример доказывает важность тех процессов, которые возникают между частицами растворителя и растворенного соединения. Именно это взаимодействие приводит к образованию ионов электролита.

Теория электролитической диссоциации и основные классы неорганических соединений

В свете основных положений ТЭД кислотой можно назвать электролит, при распаде которого из положительных ионов можно обнаружить только протон Н + . Диссоциация основания сопровождается образованием или освобождением из кристаллической решетки только аниона ОН - и катиона металла. Нормальная соль при растворении дает положительный ион металла и отрицательный — остатка кислоты. Основная соль отличается наличием двух видов анионов: ОН-группы и кислотного остатка. В кислой соли из катионов присутствуют только водород и металл.

Сила электролитов

Для характеристики состояния вещества в растворе используется физическая величина — степень диссоциации (α). Находят ее значение из отношения количества распавшихся молекул к общему их числу в растворе. Глубину диссоциации определяют разные условия. Важны диэлектрические показатели растворителя, структура растворенного соединения. Обычно степень диссоциации понижается с ростом концентрации и увеличивается при повышении температуры. Зачастую степень диссоциации конкретного вещества выражают в долях от единицы.

Классификация электролитов

Теория электролитической диссоциации в конце XIX века не содержала положения о взаимодействии ионов в растворе. Несущественным казалось Аррениусу влияние молекул воды на распределение катионов и анионов. Представления Аррениуса о сильных и слабых электролитах были формальными. Исходя из классических положений, можно получить значение α = 0,75-0,95 для сильных электролитов. В экспериментах доказана необратимость их диссоциации (α →1). Практически полностью распадаются на ионы растворимые соли, серная и соляная кислоты, щелочи. Частично диссоциируют сернистая, азотистая, плавиковая, ортофосфорная кислоты. Слабыми электролитами считаются кремниевая, уксусная, сероводородная и угольная кислоты, гидроксид аммония, нерастворимые основания. Воду также относят к слабым электролитам. Диссоциирует небольшая часть молекул Н 2 О, одновременно происходит моляризация ионов.

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

Вверх