Самодельный led светильник. Как сделать светильник из светодиодной ленты своими руками. Область применения самодельных LED светильников

Всем добрый день, в этой статье продолжу тему ЛЕД ламп, а главное мощных, под этим подразумевается от 10 до 50 Вт. После долгих поисков своих светодиодов я нашёл 34 штук по 1 Вт. Сразу встал вопрос: чем это все питать? Было найдено решение использовать электронный трансформатор TASHIBRA 50-60W. У нас лампа потребляет прилично и запускаться он должен без переделки. Мной был добавлен диодный мост (диодный мост должен быть обязательно высокочастотным или среднечастотным) и конденсатор. Да, вот такой нехитрый трюк. Но должен предупредить: такой БП не имеет никакой стабилизации и защиты. Чтоб продлить светодиодам жизнь - не нужно питать их 12 вольтами, как положено, а 10-11 В, что вполне хватает и яркость не падает, есть небольшой запас на повышение напряжения в сети. Также не минуем вопрос фильтров на входе, нужно поставить конденсатор 400 Вольт 10 мкФ и намотать на ферритовое кольцо несколько витков сетевого провода, вот и все.

Все это до меня дошло немного поздно и на фото не видно. Ну и наболевшая тема, охлаждение светодиодов. Как же обеспечить хорошие охлаждений, но чтоб все это выгладило компактно и без кулеров. Знаете, как в сказке «Решение есть - нужно только...» только что? - спросите вы. Нужно уменьшить напряжение питания светодиода на 10-20% - вот и все дела. Многие сейчас скажут, а как же яркость она же тоже упадет? Могу вам честно сказать, яркость упадет не более чем на 5-10%. Но вы продлите строк эксплуатации светодиодов, и вмести с этим уменьшите выделение ненужного тепла.

Перематываем трансформатор, делаем радиатор с куска алюминия и прикрепляем светодиоды следующим образом: на посадочное место намазываем немного термопасты, после чего закрепляем светодиоды на радиаторе эпоксидной смолой. Я для пробы зафиксировал термоклеем, но это не выход. Далее собираем все в «кучу». После тестирование выяснилось, что площадь радиатора слишком мала, после чего установил маленькой кулер, который и решил все проблемы.

Финальное тестирование показало, что температура радиатора составляет всего 38 градусов после 4 годиной работы. При сравнении обыкновенной лампы накаливания и сделанной новой результат, как говорится, на лицо. Всем спасибо за внимание, с вами был Kalyan-Super-Boss. Удачи в повторении схемы!

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».
При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.
    Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:
  • Потрясающая экономичность (до 10 раз в сравнение с лампами накаливания).
  • Огромный срок службы.
  • Совершенные и безопасные блоки питания (драйверы).
  • Абсолютно не зависят от количества включений.
  • При нормальном охлаждении не теряют яркости практически весь период эксплуатации.
  • Полная механическая безопасность (даже если разбить декоративный рассеиватель, никаких вредных веществ в помещение не попадет).
Недостатка два:
  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).
Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.
Но именно в этой конструкции кроется «засада».


Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.
Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.
Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.
Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.
Есть два основных направления при разработке светодиодных источников света:
1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.
2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.
Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».


Характеристики следующие:
  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый
Такое добро продается по 3 рубля пучок на любом радиорынке.
Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.


В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.
Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.
Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя
Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.


После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.
Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.
Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.
Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).
Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.
Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.
Расчет гасящего конденсатора производится по формуле:
I = 200*C*(1.41*U cети - U led)
I – полученный ток цепи в амперах
200 – это константа (частота сети 50Гц * 4)
1,41 – константа
С – емкость конденсатора С1 (гасящего) в фарадах
U сети – предполагаемое напряжение сети (в идеале – 220 вольт)
U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)
Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.
Для удобства можно создать формулу в Exel.


Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.
Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.


В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.


После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.



Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.



Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.


Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.



Собственно, установка.


Светит равномерно, в глаза не бьёт.


Люмены не мерял, по ощущениям – ярче, чем лампа накаливания 40 Вт, немного слабее 60 Вт.


LED лампа в плоский потолочный светильник на кухню


Идеальный донор для подобного проекта. Все светодиоды буду расположены в одной плоскости.


Рисуем шаблон, вырезаем матрицу для размещения LED элементов. При таком диаметре плоский лист ПВХ будет деформироваться. Поэтому я использовал донышко от пластикового ведра из-под строительных смесей. По внешнему контуру есть ребро жесткости.


Диоды устанавливаются с помощью привычного шила: 2 дырки по разметке. Если хорошенько копнуть на , то можно найти очень дешевые светодиоды для своих поделок.)
В данном случае, это распространенный AXD-1WXSJ30W, мощностью 1Вт, током ~300мА и яркостью ~100 Люмен.

Вообще, покупка этих светодиодов связана с желанием облагородить их собрата - китайского светильника на 2 лдс по 36 ватт. Вот так он выглядел до первого перевоплощения:

Да-да, пожелтевший от солнца и с мухами…

От пожелтения и невзрачного внешнего вида такие лампы избавляются окраской корпуса алюминиевой краской из баллона. Это придаст им цвет алюминия без глянца. Выглядит шикарно и «богато».))

Но нет… это же по-прежнему набивший оскомину светильник на две лдс?!
Ок. Добавим полсотни светодиодов! (другие полсотни диодов используем для второго светильника)

Тестируем «на коленке»:


Работает превосходно!

Переходим к подготовке светильника. Выкидываем старые потроха - электронный балласт и гнезда для ламп. Выясняется что основная (средняя) часть корпуса лампы и правда алюминиевая, то что надо для охлаждения!
Первая примерка:

По задумке нам нужны некие детали из алюминиевых профилей. Идем за ними в кастораму:


Ого… чертовски дорого. Размеров всего два - метровые и двухметровые. Лампа имеет длину под метр двадцать и нам выгоднее приобрести метровые профиля. Но какие? Ш-образные чертовски хороши и похожи на радиатор. Но цена под 80 рублей… К тому же на каждую лампу понадобится штуки по три… И тут натыкаемся на чудный двутавр 3см х 2 см за смешную цену - 39 рублей. Что за цена, почему так… не знаю.


Для одной лампы нужна пара.

Очередная примерка

Скрепляем их между собой заклепками, как самым дешевым средством. Сверлим отверстия для плат.

Закрепляем драйвера.

Платы с рапаянными светодиодами крепим также заклепками, смазав их алюминиевое основание в этот раз теплопроводной пастой КПТ-8. Она гораздо дешевле клея, а нужно ее для этих целей много.

Подпаиваем и укладываем провода.

Изделие готово!







Итак, мы избавились от старой ЛДС и получили современную, стильную и уникальную лампу на светодиодах.
Температура нагрева алюминиевого профиля держится в районе 60 градусов, что вполне приемлемо.
Потребляемая мощность получилась примерно 45 ватт против 60 у непеределанной ЛДС. Светит наша светодиодная лампа явно ярче (светодиоды, кстати, покупались цвета white) чем ЛДС, что для меня осталось загадкой, т.к. характеристики ламп ЛДС - по 2500 люмен каждая. То есть 5000 люмен весь светильник. Про одноваттные светодиоды пишут где 100-120 люмен, где 90-110… На лампу их использовано 50 штук, то есть эквивалентно вроде бы, но по факту - она процентов на 20 ярче.

Расходы.
1. светодиоды 1Вт - 50 шт ($4.2: 2) $2.1
2. платы для диодов - 10 шт ($8: 2) $4
3. драйвер - 2 шт ($2.36 * 2) $4.72
4. ал. профиль - 2шт (39 руб * 2) 80 руб или примерно $1.5
Итого: $12.32 за 50 Ватт.
То есть, за 1 доллар получили 4 Вт светодиодного света. Рекорд?

Скрытый текст

Посмотрите сюда:
- светодиодная сборка 9 Вт (COB) на керамической подложке со встроенным драйвером! Просто подай 220В! Лот из 10 штук за 28$ - 90Вт за 28$ это 3.2 Вт за 1 доллар.

А вот это интереснее - - 10 штук диодов 5730 на плате с драйвером. Лот из 10 плат стоит $12.78 а это 50 Вт и… барабанная дробь… 3,91 Вт за доллар!
Здесь (готовая плата) получается 3.84 Вт за доллар.

Ну что же, полученный результат в 4 Вт (400 люмен) за доллар не так просто побить. Вариант с дискретными диодами ремонтопригоден и дешев.

PS: Продавцы использованных , и отработали отлично - отправили быстро и без проволочек. В светодиодах был брак до 20%, но при первом же упоминании продавец предложил отправить (и в дальнейшем отправил) двойное количество взамен брака со следующим заказом у него. Так что проблему он закрыл быстро. Без претензий. Всех могу рекомендовать.

Далее были закуплены необходимые компоненты.
Диоды:
XTEAWT-00-0000-000000HE1-STAR 28 штук по 150руб. на сумму 4200руб.
XBDRED-00-0000-000000801-STAR 4 штуки по 166руб. на сумму 664 руб.
XBDROY-00-0000-000000M01-STAR 4 штуки по 106 руб на сумму 424 руб.
XBDGRN-00-0000-000000D01-STAR 4 штуки по 113 руб. на сумму 452 руб.
Источник питания HVGC-150-700A, Mean Well на сумму 5245 руб.
Радиатор 800мм на сумму 1800руб.
Термоклей 650 руб.
Уголки, стекло, светорассеивающие стёкла (4 штуки) провода, вилка в розетку, около 2000руб.
Итого примерно 15435руб.

В качестве основы был выбран радиаторный профиль под кодовым названием ОХ00859. Выбор радиатора обусловлен тем что его эффективность несколько выше, а также были некие технические моменты требующие такого исполнения.


Длинной светильник получился 800мм. Длинна тоже была утверждена человеком для коготоро светильник был собран.

В результате поисков алюминиевых уголков не удалось найти тот размер который мне был нужен. Тут я поясню, мне нужен был такой уголок, у которого одна сторона около 5мм. (она будет держать стекло) а другая 4-5см. Окантовка светильника таким уголком позволяет оставить между стеклом и диодами достаточно места чтобы в дальнейшем на диоды можно было поставить вторичную оптику. В одном месте сказали надо месяц ждать поставки в другом вообще его перестали закупать. Пришлось ехать в Леруа Мерлен и покупать пластиковый.



После этого была получена посылка из "Электронщика" далее можно увидить 11.000руб. на фото, выглядит очень скромно:)

Этот термоклей засыхает очень быстро, буквально за несколько минут. В связи с этим сразу началась пайка.


После пайки была произведен пробный запуск.

После пробного запуска окончательная сборка.

Если у вас есть какието вопросы, или желание заказать сборку такого или подобного светильника, то просьба писать на электронную почту

LED лампочки 13,5 Вт для достаточного освещения помещения площадью 8 м 2 должно было быть вполне достаточно. Но на деле оказалось, что света немного не хватало.

Анализ показал, что причина недостаточного освещения при достаточной мощности лампы крылась в конструкции LED лампы. В нижней ее части, параллельной горизонту и направленной вниз находилось всего 36 светодиодов, а от остальных 162 световой поток шел в боковые стороны и в дополнение снижался, проходя через матовое стекло плафона. Таким образом, реальная освещенность пола была эквивалентна освещению светодиодной лампочкой направленного света мощностью не более трех ватт.

Из-за ошибочного выбора типа лампочки недостаточная освещенность помещения кухни, особенно в зимнее время, создавала дискомфорт, и пришло осознание того, что пора лампочку в люстре заменить на LED лампу другой конструкции.

Поиск недорогой светодиодной лампочки мощностью около 16-18 Вт с широким углом направленного теплого света не увечилась успехом. Лампы с мощными одноваттными светодиодами из-за установленной оптики имели малый угол или не подходил цоколь. А подходящие лампы были очень дорогими. Лампы с маломощными светодиодами типа LED-Y-SMD352 или LED-Y-SMD5050 не устраивали по мощности.


Так как имеющийся светильник имел большой плафон, то возникла идея сделать мощную LED лампу своими руками из нескольких маломощных. В результате было куплено четыре недорогие лампы типа MR16 мощностью 4,5 Вт, для них четыре патрона с цоколем GU5.3 и из них сделана одна мощная лампа, свечение которой вы видите на фотографии.

Затраты составили менее $10, времени на переделку ушло несколько часов. Результат получился отличный. Правда, светильник стал выглядеть необычно, как будто соединились прошлое и хай-тек. Сделанная мощная LED лампа из нескольких маломощных получила дополнительное преимущество – в случае перегорания одной из них помещение будет продолжать освещаться в достаточной степени оставшимися лампочками, можно легко менять оттенок света, установив, например, две лампочки теплого, а две холодного света.

Изготовление мощной LED лампы

Любая работа по изготовлению самоделок начинается с эскизных работ – измерения размеров деталей и с учетом их габаритных и присоединительных размеров составления общего эскиза будущего изделия.


Для изготовления составной одной мощной LED лампы из нескольких маломощных понадобится цоколь под патрон Е27 с основанием от энергосберегающей ламы , четыре лампы MR16 и четыре патрона для них GU5.3. Габаритные и присоединительные размеры их вы видите на фотографии эскизов.


Далее, исходя из полученных размеров деталей, нужно начертить эскиз основания будущей лампы. В качестве основания была выбрана пластина из стеклотекстолита толщиной 1,5 мм и диаметром 90 мм. Основание можно сделать также из любого металла, например, алюминия или стали толщиной 1 мм.

Следующий шаг это разметка будущего основания лампы. С помощью штангенциркуля или школьного циркуля наносится образующая линия основания. Далее наносятся в соответствии с эскизом точки сверления отверстий под цоколи для лампочек и проводов. Круглую форму основанию можно придать с помощью электрического или ручного лобзика. Основание можно сделать и прямоугольной формы, вырезав его с помощью ножниц по металлу. После выпиливания или резки острые кромки нужно снять с помощью мелкой наждачной бумаги.


Для получения отверстий в точно размеченных местах лучше сначала их просверлить тонким сверлом, например диаметром 1 мм, а затем уже рассверлить до нужного диаметра более толстым сверлом.

Цоколи GU5.3 к основанию решено было закрепить с помощью винтов с метрической резьбой М3. Поэтому сначала были просверлены отверстия диаметром 2,5 мм, а затем с помощью метчика нарезана резьба.

У отверстий, через которые будут проходить электрические провода, с помощью сверла большего диаметра были сняты острые края и сделаны фаски.


Основание для самодельной лампы готово и можно приступать к монтажу на него деталей. Для придания основанию эстетического вида можно его покрасить краской или оклеить пленкой.


Самым простым способом является оклейка основания самоклеящейся алюминиевой фольгой. Полоски достаточной ширины у меня не оказалось, и поэтому получился шов. Если нет фольги, покрытой липким слоем, то можно приклеить с помощью клея, например, «Момент» обыкновенную алюминиевую фольгу, которую используют для бытовых нужд или обвертку от шоколадки.


Цоколь от основания энергосберегающей лампы Е27 к основанию крепится с помощью двух уголков метрическими винтами, согнутых под прямым углом из планок, зажимающих сетевой провод в электрических вилках С1-b советского образца. Уголки можно сделать, нарезав полоски из стального листа толщиной 1-2 мм, а в качестве крепежа использовать саморезы .


Для того, чтобы основание энергосберегающей лампы не попортило изоляцию проводов, идущих от цоколей GU5.3, в нем с четырех сторон с помощью круглого напильника были сделаны выборки.


Первыми на основание будущей составной лампы устанавливаются и закрепляются электрические патроны GU5.3. Провода, выходящие из патронов, были довольно длинными. Я не стал их укорачивать, так как места для укладки проводов в основании от энергосберегающей лампы было достаточно.

Далее по одному проводу, идущему из каждого патрона, скручиваются вместе. Оставшиеся четыре провода от патронов тоже скручиваются вместе. Полученные скрутки пропаиваются с помощью паяльника оловянно-свинцовым припоем . Если нет возможности паять, то соединение можно выполнить с помощью клеммной колодки .

Осталось выложить провода по спирали и их концы соединить с концами проводов, подсоединенных к цоколю основания энергосберегающей лампы. Цветовая маркировка проводов в данном случае значения не имеют.

Скрученные провода, идущие от патронов и цоколя, соосно внахлест прикладываются друг к другу и скрепляются каплей припоя. На место пайки для изоляции надевается кусок хлорвиниловый трубки.

Осталось заправить провода в основание энергосберегающей лампы и зафиксировать его на основании лампы с помощью двух винтов. Новая составная лампа готова и можно ее вкручивать в патрон светильника и устанавливать в патроны GU5.3 светодиодные лампочки.


Испытания показали, что светодиодные лампочки в патронах удерживаются с достаточной слой. Но вероятность их выпадения все же, существовала. Поэтому для надежного их закрепления в центре основания была дополнительно установлена стойка с резьбой.


После установки LED лампочек к стойке с помощью винта М3 закреплялась большая шайба, которая прижимала лампочки за края к патронам и исключала со временем их самопроизвольное выскальзывание. Вместо шайбы на стойке можно закрепить, например, матовое стекло для получения более мягкого света или декоративное украшение.


На фотографии изображена сделанная своими руками мощная LED лампочка из четырех маломощных. Снимок лампы сделан со стороны цоколя. Лампа чем-то напоминает мне современный космический летательный аппарата.

А на этой фотографии запечатлен вид самодельной лампы из четырех маломощных MR16 со стороны их установки.


Все, кто из знакомых видел светильник с модернизированной лампой, удивлялись диковинке, и отмечали отличную освещенность, которую обеспечивали лампочки в помещении кухни. Хотя, придумывая эту конструкцию, я в воображении хорошо представлял, что в конечном итоге должно получиться, но результат превзошел все мои ожидания. Получилось гораздо интереснее.

Предложенную технологию изготовления светодиодной лампы можно использовать для изготовления адаптера с целью возможности установки лампочки в светильник с типом цоколя, отличного от типа патрона светильника.

Вверх