Петров системы стабилизации буровых судов скачать пдф. Анализ поведения подвижного объекта в замкнутом пространстве. Приблизительный поиск слова

БУРОВОЕ СУДНО (а. drilling vessel; н. Воhrschiff; ф. navire de forage; и. barсо perforador) — плавучее сооружение для морского бурения скважин, оборудованное центральной прорезью в корпусе, над которой установлена , и системой для удержания судна над устьем скважины.

Впервые бурение с применением бурового судна начато в Атлантическом океане в 1968 (с американского судна "Гломар Челленджер"). Современные буровые судна (рис.), как правило, самоходные, с неограниченным районом плавания. Водоизмещение бурового судна 6-30 тысяч т, дедвейт 3-8 тысяч т, мощность энергетической установки, обеспечивающей буровые работы, позицирование и ход судна, до 16 МВт, скорость хода до 15 узлов, автономность по запасам 3 месяца. На буровом судне применяются успокоители качки, позволяющие вести бурение скважин при волнении моря 5-6 баллов; при большем волнении бурение прекращается и судно находится в штормовом отстое со смещением от скважины (расстояние до 6-8% от глубины моря) или бурильная колонна отсоединяется от устья скважины. Для удержания бурового судна в заданной точке бурения в пределах, допускаемых жёсткостью колонны бурильных труб, применяют 2 системы позицирования: статическую (с использованием заякоривания судна) и динамическую стабилизацию (с помощью гребных винтов и подруливающих устройств).

Якорная система используется для бурового судна при глубине моря до 300 м; включает тросы и цепи, специальные якоря массой 9-13,5 т (8-12 штук), якорные лебёдки с усилием по 2МН, оборудованные контрольно-измерительной аппаратурой. Расстановка якорей и их уборка производятся со вспомогательных судов. Для увеличения манёвренности и сокращения времени работы при уходе с точки бурения используют т.н. якорные системы круговой ориентации судна (специально встроенная в центре корпуса судна турель с площадкой, на которой смонтировано всё якорное устройство, включая лебёдки). Удержание бурового судна на позиции с помощью системы динамической стабилизации применяется для судов любого класса при глубине моря свыше 200 м и осуществляется автоматически (или вручную) посредством измерительного, информационно- командного и движительно-рулевого комплексов.

В измерительный комплекс входят приборы акустической системы, которые используются для стабилизации судна в режиме бурения, при выводе судна на скважину, для определения положения водоотделяющей колонны относительно устья скважины. Работа акустической системы основана на регистрации импульсов, посылаемых от донных маяков, располагаемых вблизи устья скважины, и их приёмке гидрофонами под днищем судна. В качестве дублирующей системы применяют инклинометр. В информационно-командный комплекс входят 2 вычислительные машины, получающие одновременно информацию о положении судна и состоянии окружающей среды; при этом одна из них работает в командном режиме, управляя двигателями, вторая (резервная) — автоматически (при выходе из строя первой). Движительно-рулевой комплекс включает главные движители судна, подруливающие устройства и систему управления ими. Усилия продольного упора на судне создаются гребными винтами регулируемого шага, поперечного — специальными винтами регулируемого шага, устанавливаемыми в поперечных тоннелях в корпусе судна. Изменение величины и направлений упоров осуществляется регулированием шага винтов по команде вычислительной машины или вручную с пульта управления движительной системой.

Буровое судно оборудуется также пультом управления, который предназначен для контроля за положением судна и водоотделяющей колонны в режиме автоматической стабилизации, и дистанционным ручным управлением при постановке судна на позицию. Разновидность бурового судна — т.н. шлангокабельные суда, предназначенные в основном для инженерно-геологического бурения на глубине 200 метров при глубине моря до 600 метров. Они оборудуются системой динамической стабилизации, гибким шлангокабелем, благодаря чему требования к смещению судна относительно устья скважины предъявляются менее жёсткие, чем при использовании бурильных труб.

Основное назначение систем стабилизации БС - предотвращение его горизонтальных смещений от устья скважины на величины выше допустимых во избежание поломки обсадных и бурильных труб. В то же время некоторые типы систем стабилизации при правильной технологии их использования обеспечивают также существенное уменьшение качки БС.

Влияние типа и параметров системы стабилизации судна на его качку и дрейф

Основное назначение систем стабилизации БС - предотвращение его горизонтальных смещений от устья скважины на величины выше допустимых во избежание
поломки обсадных и бурильных труб. В то же время некоторые типы систем стабилизации при правильной технологии их использования обеспечивают также
существенное уменьшение качки БС.

Стабилизация БС при помощи закольных свай полностью исключает его дрейф и уменьшает качку. Однако область эффективного использования закольных свай
ограничена глубинами воды до 8 м и волнением моря до 3 баллов.
Якорная система проявляет максимальную удерживающую способность при горизонтальном приложении к якорю усилия от троса. Установлено, что если угол
приложения нагрузки больше 12° от горизонтали, то удерживающая способность якоря значительно уменьшается. Если принять, что якорный трос вытянут в
прямую линию, то его длина для получения такого угла наклона должна быть в 4,8 раза больше глубины воды в месте бурения.

Однако никакими усилиями наклонно направленный трос невозможно вытянуть в прямую линию, под действием силы тяжести он всегда провисает, и это уменьшает
угол наклона его при подходе к якорю. Поэтому длину заброшенного в воду якорного троса рекомендуют принимать при безветренной погоде, отсутствии сильных
течений и колебаний уровня воды больше глубины акватории в 3-4 раза, а при работе в неблагоприятных погодных условиях - в 2-3 раза. Для увеличения
удерживающей силы и улучшения амортизационных свойств якорной системы рекомендуется к якорному тросу в нескольких метрах от якоря подвешивать специальный
груз или между якорем и тросом устанавливать тяжелую цепь длиной 2-3 м.
Сила внезапных нагрузок от ветра и волнения расходуется прежде всего на уменьшение провеса якорного троса. Одновременно с уменьшением провеса троса увеличивается сила его натяжения, которая создает момент, препятствующий наклону судна. Таким образом, длинный якорный трос демпфирует внезапные нагрузки и уменьшает бортовую, килевую и вертикальную качку судна.

Успокоители качки судов

Работа успокоителей качки судов основана на том, что они создают стабилизирующий момент только при возникновении отклоняющего момента, т.е. когда судно
уже получило угловое наклонение, отличающееся от его значения на тихой воде. Поэтому полностью исключить качку БС успокоители не могут. Тем не менее
успокоители качки частично компенсируют возмущающий момент при качке судна, вследствие чего уменьшаются ее амплитуда, скорость и ускорение. Это
благоприятно сказывается на работе судовых механизмов и самочувствии находящихся на судне людей.

По принципу управления работой успокоители качки делятся на пассивные и активные. Пассивные не имеют искусственного управления стабилизирующим моментом
и не требуют каких-либо специальных источников энергии. Активные успокоители осуществляют изменение стабилизирующего момента с помощью специальных
механизмов. В качестве успокоителей качки используют боковые и торцевые кили, управляемые боковые рули, пассивные и активные успокоительные гироскопы и
цистерны.

Боковые и торцевые кили представляют собой длинные пластины, устанавливаемые на корпусе БС ниже ватерлинии. Кили создают дополнительное сопротивление при бортовой и продольной качке и способствуют
значительному уменьшению амплитуды колебаний (на период качки боковые и торцевые кили не влияют). Применение боковых килей рациональной площади приводит к
уменьшению амплитуды бортовой качки быстро движущегося судна на 20 - 30 % (при больших размерах площади килей до 50 %). Конструктивно кили являются
простейшими пассивными успокоителями. Однако их использование приводит к некоторой потере скорости хода судна.

Управляемые бортовые рули представляют собой крылья малого удлинения, которые выступают с обоих бортов судна и снабжены механизмами, обеспечивающими их
поворот, выдвижение из корпуса и уборку внутрь него. Такие рули относятся к активным успокоителям качки. Боковые управляемые рули особенно эффективно
действуют при высокой скорости хода судна, снижая амплитуду бортовой качки в несколько раз. Благодаря этому повышается скорость судна на волнении, несмотря
на то что выдвинутые рули увеличивают сопротивление его движению на тихой воде.

Действие гироскопического успокоителя качки основано на том, что массивный гироскоп при быстром вращении противодействует изменению направления своей
оси вращения в пространстве. Гироскопические успокоители бывают пассивными и активными. Они одинаково эффективно умеряют качку на ходу судна и в дрейфе.
К недостаткам гироскопических успокоителей относятся значительная масса, неудобство расположения, большая стоимость, сложность устройства в
эксплуатации, расшатывание связей корпуса и опасность значительных его повреждений при аварии гироскопа. Как показала проектная проработка, выполненная
американскими специалистами применительно к судну типа AGOR-3 (водоизмещение -1400 т), масса гироскопического успокоителя должна быть около 70 т, для его
размещения потребуются площади объемом -145 м3, а потребляемая мощность составит 260 кВт, т.е. 35 % общей мощности ЭУ судна.

Успокоительные цистерны бывают пассивными и активными. Конструктивно эти успокоители представляют собой специальные сообщающиеся цистерны с
переливающейся в них водой, расположенные по бортам судна. Принцип действия такого успокоителя состоит в том, что при качке переливание воды из цистерны
одного борта в цистерну другого отстает от наклонения судна. Тем самым создается стабилизирующий момент, противодействующий наклонению судна.
Активные успокоительные цистерны обеспечивают почти полное успокоение бортовой качки судна при всех соотношениях между ее периодом и периодом волны
(т.е. при нерегулярном волнении). Они эффективно действуют на ходу и в дрейфе судна, но требуют сложного и дорогого оборудования (насос или воздуходувка,
приборы управления), дополнительных затрат мощности для его привода. Например, мощность двигателя насоса активных цистерн, установленных на
научно-исследовательском судне "Метеор" (ФРГ), равна 110 кВт.

Пассивные успокоительные цистерны малоэффективны в условиях нерегулярного волнения, и их эффективность зависит от нагрузки судна. В то же время
наибольшее распространение для уменьшения бортовой качки на научно-исследовательских судах получила система стабилизации типа Флюм, в основе которой лежит
принцип работы пассивных успокоительных цистерн. Главными элементами системы Флюм являются три цистерны: две бортовые и одна средняя, соединенные между
собой каналами и снабженные клапанами вентиляции. Примерно на половину своей высоты цистерны и каналы заполнены водой.
Принцип действия системы заключается в следующем: вода перетекает из средней цистерны в бортовую или наоборот таким образом, чтобы уровень воды в
средней цистерне при наклонении судна оставался постоянным. Перетекающая вода создает при этом восстанавливающий момент, который демпфирует бортовую качку.
Изменяя количество воды в цистернах, можно увеличивать или уменьшать метацентрическую высоту, что особенно важно для буровых судов. У БС значение
метацентрической высоты в процессе бурения может колебаться до 30 - 50 % в зависимости от расхода запасов топлива и, главным образом, от того, где
находится буровой снаряд - в скважине или на палубе судна.

Система Флюм отличается простотой и высокой эффективностью, низкими начальными и эксплуатационными затратами, относительно небольшими размерами и
массой (0,7 - 3 % от водоизмещения), возможностью использования топлива в качестве рабочей жидкости. В обычных условиях она, по данным компании "Матсон",
снижает амплитуду бортовой качки на 75 - 80 %, а при условиях, близких к резонансу, - до 90 %. При испытаниях системы на модели достигнуто уменьшение
амплитуды бортовой качки в 2-3 раза. Эффект от применения системы Флюм был настолько значительным, что установка бортовых килей существенно не влияла на уменьшение бортовой качки модели.

Влияние соотношения главных размерений судна на параметры его качки

Для уменьшения килевой и вертикальной качки целесообразно проектировать суда, длина которых была бы больше длины волны, при которой с них
предусматривают осуществлять бурение (при волнении 4 балла длина волны составляет 25 - 40 м, 5 баллов - 40 - 75 м). На точке бурения БС следует
устанавливать носом на волну. Однако в процессе бурения скважины направление ветровой волны может меняться по

141 нескольку раз. А так как изменять положение судна на скважине синхронно с изменением направления волны трудно, то судно может оказаться в положении
бортом на волну. При этом существенно усиливается дрейф и снижается остойчивость судна, т.е. у него увеличиваются углы крена от действия кренящих нагрузок.
Повышение остойчивости судна достигается снижением его центра тяжести. Однако при этом ухудшаются условия работы и обитания людей, так как бортовая
качка становится стремительнее, порывистее и тяжелее.
Для улучшения условий обитания на судне период его бортовой качки необходимо увеличивать. Как следует из выражения, сделать это можно уменьшением
метацентрической высоты судна или увеличением его ширины. Уменьшение ме-тацентрической высоты судов достигается заострением обводов в подводной части
корпуса и преимущественно повышением центра тяжести судна. Последнее улучшает условия обитания на судне, но делает его, как уже отмечалось, менее
остойчивым.

Повышается остойчивость судна и улучшаются условия обитания на нем при увеличении ширины БС. Исходя из режима работы судна (стоянка на точке бурения
составляет 85-90 % всего времени), ширину его корпуса можно увеличивать до любых необходимых размеров. Наряду с этим форма и ширина корпуса не должны
создавать больших сопротивлений движению судна по воде со скоростью 1 0- 1 4 узлов.

Следовательно, при различном влиянии изменения мета-центрической высоты судна на его остойчивость и условия обитания, а ширины на остойчивость и
скорость хода БС должно быть спроектировано таким образом, чтобы при достаточной остойчивости период качки был максимальным. В работе отмечается, что амплитуда бортовой качки плавучей буровой установки при бурении не должна быть более 5 - 7° с периодом в десятки секунд.

Обычно относительная метацентрическая высота (отношение метацентрической высоты к максимальной ширине корпуса) для грузовых и пассажирских судов при
полном водоизмещении составляет примерно 0,05; для научно-исследовательских судов (НИС) она достигает 0,082 . Период качки однокорпусного НИС шириной 1
2 м (среднее значение ширины специализированных судов для геологических и геофизических исследований шельфа по), вычисленный по формуле при
указанном значении относительной метацен-трической высоты, составляет всего 9,4-10,3 с, что явно недостаточно для нормальных условий обитания на судне
людей.

Изложенное свидетельствует, что мероприятия по уменьшению качки БС путем выбора его центра тяжести, формы обводов и размеров корпуса имеют ограниченное
значение и недостаточно эффективны в условиях волнения, постоянно изменяющегося по силе и направлению.

Методы уменьшения амплитуды и силы воздействующих на судно волн

Наиболее мобильными устройствами, защищающими БС от больших волн, являются волнорезы, или волноломы. Их действие основано на том, что по мере удаления
от поверхности в глубь моря сила волн затухает по закону hx = h / е5,5(х/X)0′8,
где h и hx - высота ветровой волны на поверхности моря и на глубине х от поверхности соответственно; X - длина волны.
Расчеты показывают, что 75 % энергии волны моря приходится на его поверхностный слой, глубина которого составляет 10 % от длины волны; на глубине моря,
равной половине длины волны, ветровое волнение практически отсутствует.

Обычно волнорезами служат обладающие положительной плавучестью цилиндрические емкости, которые шарнирно соединяют между собой или помещают в сетчатую
оболочку, располагают в несколько рядов вокруг судна или со стороны волнения и раскрепляют якорями.

Для эффективной работы волнорезов оси цилиндрических емкостей должны находиться ниже уровня воды, где энергия волны максимальная. Для этого расчетную
часть каждой емкости заполняют морской водой, а оставшуюся часть - сжатым воздухом. Эффективность волнореза повышается с увеличением диаметров его
цилиндрических емкостей. Экспериментально с помощью волнорезов специалисты буровых компаний Англии уменьшали амплитуду волны с 9 до 1,5 м.

Сложные в техническом отношении, весьма дорогостоящие и связанные со значительным риском операции по разработке месторождений нефти и газа шельфовых зон морей и океанов включают целый комплекс взаимосвязанных этапов.

Разведочные работы. Проводимые с целью определения местонахождения геологических структур, в которых возможно скопление нефти и газа, разведочные работы осуществляют в три фазы:

Региональные исследования с целью выделения перспективных геологических информаций;

Изучение общих черт геологического строения, оценка перспектив нефтегазоносности и подготовка площадей геологогеофизическими методами к поисковому бурению;

Подготовка месторождений (залежей) к разработке с подсчетом запасов по промышленным категориям.

В первый фазе используют методы гравиметрической и магнитной разведки, включая фотографирование поверхности Земли со спутников и измерения при помощи средств инфракрасной техники.

Во второй фазе производят поисковые и. детальные геолого-геофизические работы. Для этих целей используют другие методы разведки - сейсмические исследования, изучение проб, взятых со дна моря. Вторая фаза включает также структурное и параметрическое бурение.

Третья фаза разведочных работ является завершающей и ведет к открытию месторождения (глубокое разведочное бурение). При этом производят оконтуривание месторождения, испытание скважин и подсчет запасов нефти и газа.

Элементы гидрогеологического режима

Освоение морских нефтяных и газовых месторождений коренным образом отличается от разведки и разработки их на суше. Большая сложность и специфические особенности проведения этих работ в море обусловливаются окружающей средой, инженерно-геологическими изысканиями, высокой стоимостью и уникальностью технических средств, медико-биологическими проблемами, вызванными необходимостью производства работ под водой, технологией и организацией строительства и эксплуатации объектов в море, обслуживанием работ и т. п.

Особенностью континентального шельфа нашей страны является то, что 75% акваторий расположено в северных и арктических районах, которые продолжительное время покрыты льдами, а это создает дополнительные трудности в промышленном освоении. Окружающая среда характеризуется гидрометеорологическими факторами, определяющими условия проведения работ в море, возможность строительства и эксплуатации нефтепромысловых объектов и технических средств.

Основные из них:

    температурные условия

    волнения

  • уровень воды

    ледовый покров морей

    химический состав воды и др.

Учет этих факторов дает возможность оценить их влияние на экономические показатели поисково-разведочных работ и морской добычи нефти и газа. Строительство морских нефтепромысловых сооружений требует проведения инженерно-геологических изысканий морского дна. При проектировании фундаментов нефтепромысловых сооружений особое внимание уделяют полноте и качеству инженерно-геологических изысканий грунтов на месте и в лабораториях. Достоверность и полнота данных в значительной мере определяют безопасность эксплуатации сооружения и экономичность проекта.

С увеличением глубин моря резко возрастает стоимость разработки месторождений. На глубине 30 м стоимость разработки в 3 раза выше, чем на суше, на глубине 60 м - в 6 раз и на глубине 300 м - в 12 раз.

В последние годы проводятся большие научно-исследовательские работы и опытно-промышленная эксплуатация, как отдельных узлов, так и целых комплексов оборудования подводной эксплуатации скважин. Особого внимания заслуживает подводная эксплуатация морских месторождений в ледовых условиях. Это обусловлено устранением возможных действий льдов на технические средства, уменьшаются навигационная опасность, пожароопасность и обеспечивается экономичность разработки месторождения.

Проблемой пока являются прокладка и особенно обследование, и ремонт подводных трубопроводов в межледовый период. Эксплуатация морских технических средств, и в основном техники для подводных методов разработки, требует обеспечения безопасного ведения подводно-технических работ при ремонте и осмотре подводной части плавучих средств и гидротехнических сооружений. Наряду с решением технических вопросов необходимо решать ряд задач по медико-биологическому обеспечению жизнедеятельности человека, в том числе в экстремальных условиях, а также задач медико-технических аспектов тепловой защиты жизнедеятельности человека при проведении работ под водой.

Разведка и разработка морских нефтяных и газовых месторождений - сложные в техническом отношении операции, весьма дорогостоящие и связанные со значительным риском. Основные проблемы при освоении этих месторождений - проблемы техники и технологии производства этих работ.

Работы по разведке и разработке морских месторождений обычно ведутся в два этапа:

    На первом этапе производятся геологоразведочные работы в межледовый период, и в этом случае, возможно, применять технику, которая работает в умеренных зонах.

    На втором этапе, при разработке месторождений, т. е. добыче, подготовке и транспорте нефти и газа, вследствие непрерывного производственного цикла, при котором процесс должен вестись круглый год, в том числе зимой, когда море покрыто льдом, требуется уникальная и надежная техника, технические и технологические параметры и конструктивные решения которой обусловливаются требованиями высокой надежности, долговечности, обеспечивающими безопасность работ в каждом конкретном районе.

Одно из основных условий успешного решения проблемы обустройства- наличие достаточной по объему и качеству информации об окружающей среды. Темпы роста данных наблюдений в мировом океане весьма высоки, что обеспечивает удвоение объема накапливаемой информации каждые 5-6 лет. Благодаря быстрому развитию космических средств наблюдений ожидается, что в ближайщем будущем продолжительность увеличения информации, возможно, несколько уменьшится.

Тщательное изучение гидрометеорологических условий наиболее необходимо при осовении нефтяных и газовых месторождений. Это обусловлено тем, что гидротехнические сооружения строятся и эксплуатируются в незащищенных акваториях в тяжелых погодных условиях. В экстремальных условиях окружающей среды сооружения должны выстоять и не разрушиться от воздействий стихии и обеспечить надежность в работе на весь период эксплуатации месторождения (25-30 лет).

На разных этапах проектирования разработки нефтяных и газовых месторождений требуются различные объемы гидрометеорологической информации.

На этапе проектирования морских нефтепромысловых сооружений требуются более детальные и в больших объемах данные для определения мест и схемы размещения на площади месторождения гидротехнических сооружений и степени воздействия среды на них. Сюда входят следующие исходные данные:

Максимальная высота волн и соответствующий им период;

Максимальные значения скорости ветра и течений;

Экстремальные изменения уровня воды с учетом приливов и штормовых нагонов;

Ледровые условия;

Режимные распределения высот, периодов и параметров волн, волн по румбам, скорости и направления ветров и течений;

Профили течений, спектра ветра и волн, групповые свойства волн;

Ход скорости ветра и параметры волн в типовых и наиболее жестких штормах.

Ветровой режим – основной метеорологический фактор, влияющий на такие гидрологические элементы, как волнение, течение, дрейф льда и т.д. Силу ветра и влияние ее на гидрометеорологическое состояние водного бассейна принято определять по шкале Бофорта.

Морские течения - поступательное движение масс новой суши и т.д. Морские течения, оказывающие большое влияние на циркуляцию атмосферы и климат в различных частях земного шара, вызваны трением ветра о поверхность моря, неравномерным распределением солености (а, следовательно, и плотности) воды, изменением атмосферного давления, происходящем за счет притока и оттока морских вод. Различаются морские течения по степени устойчивости: изменчивые, временные, периодические (сезонные), устойчивые; по расположению: глубинные поверхностные, придонные; по физико- химическим и температурным свойствам.

Волной именуется распространение колебаний (возмущений) в любой деформированной среде. Из много численных типов волн существенно роль играют ветровые и гравитационные. Наиболее важными для расчетов параметрами являются их длина, высота и частота.

Исследования окружающей среды ведутся по специальным методикам и рекомендациям, разработанным специальными организациями, обществами и ведомствами с учетом требований отраслей. Фундаментальными исследованиями занимаются государственные организации, ассоциации и т.п.

Контрольные вопросы:

1.В чем заключается сложность освоения морских месторождений?

2. Чем характеризуется окружающая среда?

3. Что входит в гидрометеорологические факторы?

4. Какие исходные данные нужны для проектирования нефтегазовых сооружений не море?

5. Дайте определения ветровому режиму, морским течениям и волнам.

Удаление районов буровых работ от береговых баз, слож­ность и малая скорость буксировки, а также небольшая авто­номность снижают эффективность использования полупогружных буровых установок. Поэтому для поискового и разведочного бу­рения в отдаленных районах применяют буровые суда. (рис.11).

Основным режимом эксплуатации буровых судов является бурение скважины (85-90% от всего времени эксплуатации судна). Поэтому форма корпуса и соотношение главных размерений определяются требованиями остойчивости и обеспечения стоянки с возможно малыми перемещениями. Вместе с тем фор­ма корпуса должна соответствовать скорости передвижения суд­на 10-14 узлов и более. Характерная особенность для буровых судов - малое отношение ширины к осадке, равное 3-4.

Рис. 11- Заякоренное буровое судно.

При­чем наблюдается тенденция уменьшения этого отношения (у судов «Пеликан», «Сайпем II» и др.), что можно объяснить расширением районов работы и требованиями повышения море­ходности. Выбор главных размерений судна зависит от требуе­мой грузоподъемности, которая определяется расчетной глубиной бурения скважин и автономностью судна.

В практике бурения разведочных скважин на море широ­ко применяют однокорпусные и многокорпусные самоход­ные и несамоходные суда. С середины 50-х до конца 70-х годов для бурения использовались только суда с якорной и закольной системами стабилизации, их удельный вес в парке плавучих буровых установок составлял 20-24 %. Область применения для бурения судов с якорной системой стабили­зации ограничена глубинами моря до 300 м.

Новые перспективы в освоении морских месторождений открылись в 1970 г. благодаря созданию системы динамичес­кого позиционирования, использование которой позволило установить ряд рекордов по глубине разведываемых аквато­рий. С этого времени произошел относительно быстрый рост мирового парка судов для бурения на больших глубинах моря.

Примерами зарубежных судов с динамической системой стабилизации являются "Пеликан" (до глубины моря 350 м), "Седко-445" (до 1070 м), "Дисковерер Севен Сиз" (до 2440 м), "Пелерин" (до 1000 м первое и до 3000 м второе поколения), "Гломар Челенджер" (до 6000 м, фактически покорена глуби­на моря 7044 м), "Седко-471" (до 8235 м).

Самоходные буровые суда бывают однокорпусными и двухкорпусными (катамараны). В отечественных производст­венных организациях используются преимущественно однокорпусные. Обусловлено это меньшими капитальными затра­тами на их изготовление, так как они создавались на базе готовых проектов корпусов рыболовецких судов.

Однокорпусные буровые суда типа "Диорит", "Диабаз", "Чароит", "Кимберлит", эксплуатировавшиеся в производст­венных экспедициях ВМНПО "Союзморинжгеология", осна­щены якорной системой стабилизации, буровыми станками шпиндельного типа и технологическим оборудованием для проведения инженерно-геологических изысканий при глубине воды от 15 до 100 м.

Опыт бурения с этих судов выявил ряд их конструктив­ных недостатков, основными из которых являются ненадеж­ная система стабилизации на скважине, малые размеры бу­ровой площадки и ограниченное число посадочных мест из-за использования серийных корпусов рыболовецких судов, невозможность передачи на забой необходимой осевой на­грузки при бурении станками шпиндельного типа без ком­пенсаторов вертикальных перемещений бурового снаряда, невозможность проведения комплекса скважинных геотехни­ческих исследований и отбора монолитов вдавливанием из-за использования бурильной колонны геолого-разведочного сор­тамента диаметром 0,050 - 0,064 м. Единственный вид сква­жинных исследований, которые можно производить с этих судов, - это прессиометрия.

Технологический комплекс каждого судна состоит из бу­ровой установки, системы для проведения скважинных гео­технологических исследований (статическое зондирование и пробоотбор) и донной пенетрационной установки. Использо­вание бурового кондуктора (водоотделяющей колонны) на этих судах не предусмотрено. Привод основных буровых механизмов гидравлический, спускоподъемные операции меха­низированы.

Специализированных судов для бурения разведочных скважин на глубинах морей свыше 300 м в России в настоя­щее время нет.

Более перспективным типом судов для бурения разведоч­ных скважин являются катамараны. По сравнению с однокорпусными судами такого же водоизмещения они имеют ряд преимуществ: более высокую остойчивость (амплитуда бортовой качки катамарана в 2-3 раза меньше, чем у одно-корпусных судов), что позволяет работать в лучших условиях при сильном волнении моря (коэффициент рабочего времени двухкорпусных судов больше, чем однокорпусных, минимум на 25 %); более удобную для работы по форме и значительно большую (на 50 %) полезную площадь палубы (поскольку ис- пользуется межкорпусное пространство), что дает возмож­ность разместить на палубе необходимое количество тяжело­го бурового оборудования; малую осадку и высокую манев­ренность (каждый корпус снабжен ходовым винтом), что способствует использованию их в условиях мелководного шельфа. Стоимость постройки однокорпусного судна со сравнимой площадью рабочей палубы на 20 - 30 % выше сто­имости судна-катамарана.

Рис. 12- Буровое судно "Катамаран".

Американская фирма "Ридинг энд Бэтес" построила буро­вое судно "Катамаран", состоящее из двух барж, скреплен­ных девятью балочными фермами (рис.12). Длина судна 79,25 м, ширина 38,1 м. С него можно бурить скважины глу­биной до 6000 м при любой глубине моря. На судне установ­лены: буровая вышка высотой 43,25 м с грузоподъемной си­лой 4500 кН; ротор; двухбарабанная лебедка с приводом от двух дизелей; два буровых насоса с приводом от двух других дизелей; цементировочный агрегат; резервуары для глинисто­го раствора; восемь якорных лебедок с электроприводом от двух дизель-генераторов переменного тока мощностью по 350 кВт; жилые помещения для 110 человек.

Из буровых судов-катамаранов значительно меньших гео­метрических и энергетических параметров следует отметить отечественные катамараны "Геолог-1" и "Геолог Приморья", техническая характеристика которых приведена ниже.

"Геолог-1" "Геолог Приморья"

Водоизмещение, т....................... 330 791

Длина, м....................................... 24 35,1

Ширина, м.................................... 14 18,2

Осадка без груза, м...................... 1,5 3,26

Высота надводного борта, м 1,7 4,47

Мощность дизель-генерато­ров,

главных.................................. 2x106,7 2x225

вспомогательных.................. 2x50 2x50

Скорость хода, узлы................... 8 9

Мореходность, баллы................. 6 8

Условия работы:

удаление от берега, км.......... До 3 До 360

минимальная глубина мо-

ря, м......................................... 2 5

волнение моря, баллы............ 3 4

Минимальная глубина моря, на которой возможно буре­ние с катамарана, определяется величиной его осадки, мак­симальная - длиной якорных тросов. Возможные глубины бурения скважин зависят от типа установленных на катама­ранах буровых установок.

Катамаран "Геолог-1" (рис.13) построен специально для инженерно-геологических изысканий в прибрежных аквато­риях Черного моря.

На катамаране смонтированы: установка УГБ-50М с электроприводом для бурения скважин глуби­ной до 30 м по породам ударным, колонковым и шнековым способами; подводная пенетрационно-каротажная станция ПСПК-69 для исследования физико-механических свойств мягких грунтов и установления литологического строения морского дна; сейсмоакустическая станция "Грунт" для не­прерывного профилирования с целью получения сведений о литологическом строении морского дна по всей зоне между опорными скважинами. В точке исследования "Геолог-1" за­крепляется четырьмя якорями, а на глубинах моря до 7 м - дополнительно двумя закольными сваями длиной по 8 м.

Несамоходные плавучие буровые установки создают, ис­пользуя в качестве основания, не предназначенные для буре­ния несамоходные суда (баржи, плашкоуты, шаланды), дере­вянные плоты или специально изготовленные для бурения металлические понтоны, катамараны и тримараны.

Из несамоходных судов чаще всего используют баржи. Из всего многообразия типов барж не все пригодны для произ­водства буровых работ на море. Наиболее удобна сухогруз­ная баржа с открывающимися в днище люками, благодаря чему буровой станок можно установить в центре баржи. Пе­ред производством работ баржу загружают балластом для придания ей большей остойчивости.

Иногда для бурения применяют две однотипные баржи, спаренные поперечными брусьями. Образуется катамаран с зазором между баржами, в котором размещается устье сква­жины. Спаривание барж позволяет применять тяжелые буро­вые установки и вести бурение в неблагоприятных гидроди­намических условиях моря.

Буровые плоты наиболее доступны в изготовлении. Тяже­лые плоты глубоко погружены в воду. Это повышает их ос­тойчивость, но увеличивает осадку и не исключает захлестывание оборудования даже небольшой волной. Со временем плоты теряют свою плавучесть, и срок службы их сравни­тельно небольшой.

Буровые металлические понтоны по водоизмещению делят на легкие площадью 30-40 м 2 и тяжелые площадью 60-70 м 2 . Остойчивость понтонов невысокая, и используют их преимущественно на закрытых акваториях при волнении моря до 2 баллов.

В России при бурении на шельфе дальневосточных морей широкое применение получили катамараны типа "Амур" и тримараны типа "Приморец", представляющие собой суда маломерного флота с ограничением плавания по волновому состоянию моря до 5 баллов. Первые несамоходные. Вторые могут передвигаться самостоятельно со скоростью до 4 узлов в тихую погоду на небольшие расстояния в пределах разве­дываемой бухты. Однако их тоже относят к несамоходным, так как условия работы в подавляющем большинстве случаев вынуждают использовать для их буксировки вспомогательные суда. Указанные катамараны и тримараны разработаны СКВ АО "Дальморгеология" для бурения ударно-забивным и вра­щательным способами разведочных скважин конкретных параметров и имеют следующие технические характеристи­ки:

Катамаран Тримаран

"Амур" "Приморец"

Длина, м...................................... 13,6 18,60

Ширина, м.................................. 9,0 11,80

Высота борта, м......................... 1,5 1,85

Осадка, м.................................... 0,8 0,95

Водоизмещение, т...................... 40 65

Число и масса (кг) якорей......... 4x150 4x250

Грузоподъемная сила буро-

вой вышки, кН............................ 200 300

Параметры скважины, м:

глубина по воде.................... 25 50

глубина по породам.............. 25 50

Максимальный диаметр по

колонне обсадных труб............. 0,146/0,166 0,219/0,243

Рис. 14- Плавучие буровые установки АО "Дальморгеология":

а - ПБУ "Амур": 1 - якорная лебедка, 2 - рубка, 3 - буровая лебедка, 4 - буровая вышка; б - ПБУ "Приморец": 1 - надстройка, 2 - буровая вышка, 3 - буровая лебедка, 4 - талевая лебедка, 5 - вибратор, 6 - враща­тель

Тримаран "Приморец" - ПБУ с тремя корпусами серий­ных судов, соединенными плоским мостом из стального про­ката (рис.14, б ). Ходовой двигатель и винторулевое устройство размещены в среднем корпусе, смещенном в корму от­носительно боковых. Дизель-генератор и промывочный на­сос расположены в двух параллельных боковых корпусах тримарана. На палубе в кормовой части установки находится надстройка бытовых и служебных помещений, в носовой - размещено буровое оборудование, содержащее Л-образную буровую вышку, лебедку для ударно-забивного бурения, тале­вую оснастку и лебедку для подъема труб, вращатель и ви­братор.

В палубе ПБУ "Амур" и "Приморец" имеются П-образные вырезы для отхода установки от скважины без извлечения обсадных труб на время шторма, плохой видимости или ре­монта и последующего подхода к скважине для продолжения бурения. Непотопляемость и устойчивость этих установок сохраняются при затоплении любого одного отсека.

Катамаран "Амур" - ПБУ с двумя параллельными корпу­сами серийных краболовных ботов, соединенными в верхней части плоским мостом из стального проката, образующим общую палубу (рис.14, а ). Энергосиловое и вспомогательное оборудование установки расположено в корпусах катамара­на, что увеличило рабочую площадку. На палубе установлены А-образная буровая вышка, лебедка для ударно-забивного бурения, вибратор, обсадные трубы, рабочий инструмент, рубка, четыре якорные лебедки.

Осн.: 2. [ 74-77 ], 3.

Доп.: 7.

Контрольные вопросы:

1. Для чего и на какие глубины предназначены БС?

2. Конструкция бурового судна.

3. Отличительная особенность в конструкции ППБУ от БС.

4. С помощью чего удерживаются БС?

5. Что можно отнести кпреимуществам БС?

Вверх